

Thilawa Special Economic Zone (Zone A) Development

Environmental Monitoring Report (Operation Phase)

Myanmar Japan Thilawa Development Limited.

April 2017

CONTENTS

- 1. Executive Summary
- 2. Summary of Monitoring Activities
- 3. Monitoring Results
- 4. Environmental Monitoring Form

Appendix

- A. Water and Waste Water Monitoring Report for September, 2016
- B. Water and Waste Water Monitoring Report for October, 2016
- C. Water and Waste Water Monitoring Report for December, 2016
- D. Water and Waste Water Monitoring Report for February, 2017
- E. Ground subsidence and ground water usage monitoring status
 (Construction Monthly Progress Report) October to December 2016
- F. Ground subsidence monitoring status

(Location- Admin Complex Compound) July 2016 to March 2017

G. Waste Disposal Record

(Construction Monthly Progress Report) October to December 2016

H.General Waste Disposal Record

(Admin Complex Compound) October 2016 to March 2017

I. Sewage Treatment Plant Monitoring Record

October 2016 to March 2017

J. Accident or Incident Case Record

October 2016 to March 2017

1. Executive Summary

The environmental inspection and compliance monitoring program will be implemented under the direction of Ministry of Natural Resources and Environmental Conservation with oversight by Thilawa SEZ Management Committee.

The monitoring record from October 2016 to March 2017 according to the Environment Monitoring Plan is submitted in conformity with the provision of Chapter 9.1, Table 9.1-2 and 9.2, Table 9.2-2 Content of the EIA Report of Thilawa SEZ Development Project (Zone A).

2. Summary of Monitoring Activities

a) Progress made to date on the implementation of the EMP against the submitted implementation schedule;

We already submitted EMP for Phase-1 Operation Phase Report (No.1, April 2016), Report (No.2, October 2016), and Report (No.3) is submitted this day attached with Operation Phase implementation schedule. This EMP Operation Phase Report is for TSEZ Zone-A Phase-1 and Phase-2. Subsequent Operation Phase reports will be submitted on Bi-Annually.

b) Difficulties encountered in implementing of the EMP and recommendations for remedying those difficulties and steps proposed to prevent or avoid similar future difficulties;

Clear guideline for the reference and target standard of water is necessary to report the clear impact of TSEZ discharging.

c) Number and type of non-compliance with the EMP and proposed remedial measures and timelines for completion of remediation;

We would like to inform that Suspended Solids at Thilawa SEZ Retention Pond discharge point (SW-1) and Retention Canal discharge point (SW-5) is higher than the standard. We are discussing with our environmental consultant to change the monitoring points for SW-1 and SW-5 because that location is the mixing point of the water from the Thilawa SEZ treated water and rainwater. Rainwater includes high Suspended Solids as it is the natural surface water conditions around this area, similar to the outside of Thilawa SEZ such as SW-2, SW-3 and SW-4. After we confirmed the changed locations, we will apply to the relevant government authority to obtain approval for such change of monitoring points.

d) Accidents or incidents relating to the occupational and community health and safety, and the environment:

There was eleven case of minor accidents and one major accident happened during monitoring period at Thilawa SEZ common area and please refer to the attached WAO Appendix (Accident Records). Each tenants accidents will report directly to Environmental Section, One Stop Service Center, Thilawa SEZ Management Committee.

e) Monitoring data on environmental parameters and conditions as committed in the EMP or otherwise required.

Please refer to the attached Environmental Monitoring Form.

3. Monitoring Result

Environmental Monitoring plan report for Operation Phase implemented according to the following table, reference on Table 4.2-2, Chapter 4, EIA report.

Monitoring Plan (Operation Phase)

Category	Item	Location	Frequency	Remark
Air Quality	NO ₂ , SO ₂ , CO, TSP, PM ₁₀	Construction site (1point)	Once/ 3month	Refer to Environmental Monitoring Report (Operation Phase) No.1, air quality monitoring will start after consult with environmental expert
Water Quality	Water temperature, pH, SS, DO, BOD, COD, coliform count, oil and grease, chromium	Discharging points and reference points (6 points) Well in the Monastery (1 point)	Once/2 month	September 2016 (Bi- Monthly), October 2016 (Bi-Annually), December 2016 (Bi-Monthly), February 2017 (Bi- Monthly)
Waste	Amount of solid waste Management of solid waste of construction	Construction site	Once/3month	Monthly Progress Reports (September, October, November, December) 2016
Noise and Vibration	Noise and vibration level of	Preservation area such as residence around the proposed construction site (2 points)	Once/3moth (peak period)	Refer to Environmental Monitoring Report (Operation Phase) No.1, noise and vibration
THE CHILD VIDIALION	construction	Preservation site such as residence along the route for on-site vehicles (2points)	Once (peak period)	monitoring will start after consult with environmental expert
Ground Subsidence	Ground elevation Consumption of ground water	Representative (1 point)	Every week	Monthly Progress Reports (September, October,
Hydrology	amount			November, December) 2016
Risk for infectious disease such as AIDS/HIV	Status of measures of infectious disease	Construction site	Once/month	Monthly Progress Reports (October, November,
Working conditions (including occupational safety)	Prehension of condition of occupational safety and health Prehension of infectious disease	Construction site	Once/ month	December) 2016 and (January, February, March) 2017
Accident	Existence of accident	Construction site	As occasion arise	

*Remark: Each locator will report their monitoring result directly to Environmental Section, One Stop Service Center, Thilawa SEZ Management Committee.

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Environment Monitoring Form

Environment Monitoring Form

The latest results of the below monitoring items shall be submitted to Authorities on once at Pre-construction phase and on quarterly basis at Construction Phase, and on bi-annually base at Operation Phase. The items, standards to be applied, measurement points, and frequency for each monitoring parameter are established based on the EIA Report for Thilawa Special Economic Zone Development Project (Zone A). Should there be any changes to the original plan, such change shall be reviewed and evaluated by environmental expert.

- (1) General
- 1) Phase of the Project
- Please mark the current phase.

□ Pre-Construction Phase

□ Construction Phase

☑ Operation Phase

2) Obtainment of Environmental Permits (Not Applicable)

Name of permits	Expected issuance date	Actual issuance date	Concerned authority	Remarks (Conditions, etc.)
ttached approval letter:	V.			

3) Response/Actions to Comments and Guidance from Government Authorities and the Public (Not Applicable)

Monitoring Item	Monitoring Results during Report Period	Duration of Report Period	Frequency
Number and contents of formal comments made by the public		Same timing of	
Number and contents of responses from Government agencies		submission of	Upon receipt of comments/complaints
Transfer and contents of responses from Government agencies		Monitoring Report	

(2) Monitoring Results

1) Ambient Mr Quality -

Remarks: Air quality monitoring will start after two years of operations assuming at December 2017 according to the consultation with environmental expert which was reported in operation phase first monitoring report.

NO2, SO2, CO, TSP, PM10

Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max.)	Country's Standard	Target value to be applied	*Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	NO ₂	ppm				307			HAZSCANNER,	
									EPAS	
	SO ₂	ppm							HAZSCANNER,	
Construction	502	PPI						0	EPAS	
Area Near	СО	ppm						Once in three months	HAZSCANNER,	
Gate 2		PPII						понцв	EPAS	
Gate 2	TSP	ppm							HAZSCANNE1R,	
	151	ррис							EPAS	
	PM10	ppm							HAZSCANNER,	
		* 1							EPAS	

^{*}Remark: Referred to the Japan and Thailand Standard (EIA Report, Table 6.4-1)

Complains from Residents

- Are there any complains from residents regarding air quality in this monitoring period? <u>□ Yes</u>, <u>☑No</u>

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

2)(a) Water Quality - September 2016

Measuring Point: Effluent of Wastewater (Thilawa SEZ discharging point which need to be monitored according to EIA are SW-1, SW-5 and SW-6. SW-2, SW-3 and SW-4 natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment are attach as reference points only. GW-1 is also as reference point for monitoring of existing tube well located in the Monastery compound.)

- Are there any effluents to water body in this monitoring period? ✓ Yes, □ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard.

Location	Item	Unit	Measured Value	Country's Standard*7	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-1	pН		6.92	6-9	5.0-9.0			Instrument Analysis Method	
	SS*2	mg/l	88	50	Max 30			APHA 2540D Method	
	DO	mg/l	5.46	≈		>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	< 0.7	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	5.19	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	3.17	10	Max 5			APHA-5520B Method	
	Cr	mg/l	0.066	0.5	Max 0.5			APHA-3120B Method	
	Total coliforms*4	MPN/100ml	90000	400	Max 400	7.5×10³		APHA-9221B Method	
SW-5	рН	-	8.47	6-9	5.0-9.0			Instrument Analysis Method	
	SS*2	mg/I	46	50	Max 30	>=4		APHA 2540D Method	
13.1	DO	mg/l	6.06	-	-		Once in two	Instrument Analysis Method	
	COD(Cr)	mg/l	3.8	250	Max 70		month	APHA 5220D Method	
	BOD	mg/l	5.89	50	Max 20			APHA-5210B Method	
HILAWA OF IS	Oil and Grease	mg/l		10	Max 5			APHA-5520B Method	

Ł0cation	Item	Unit	Measured Value	Country's Standard*7	Target value to be applied	*¹Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	Cr	mg/l	>	0.5	Max 0.5	7.5×10³		APHA-3120B Method	
	Total coliforms*4	MPN/100ml	50000	400	Max 400			APHA-9221B Method	
SW-6	pН	10	7.09	6-9	5.0-9.0			Instrument Analysis Method	
	SS	mg/l	8	50	Max 30			APHA 2540D Method	-
	DO	mg/l	5.3		-	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	< 0.7	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	5.43	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Cr	mg/l	0.04	0.5	Max 0.5			APHA-3120B Method	
	Total coliforms	MPN/100ml	< 2	400	Max 400	7.5×10³		APHA-9221B Method	
SW-2	pН	58:	6.46	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ³	mg/l	34	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	4.61		3 0	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	7.1	250	Max. 70*5	>-4	Once in two	APHA 5220D Method	
	BOD	mg/l	4.3	50	Max. 20	1	month	APHA-5210B Method	
	Oil and Grease	mg/l	ñ	10	Max. 5			APHA-5520B Method	-
	Cr	mg/l	_	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*5	MPN/100ml	160000	400	Max 400			APHA-9221B Method	
SW-3	pН	©	6.71	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ¹³	mg/l	42	50	Max.30	>=4	Once in two	APHA 2540D Method	
Point)	DO	mg/l	3.85	÷	-		month	Instrument Analysis Method	

Location	Item	Unit	Measured Value	Country's Standard*7	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	COD(Cr)	mg/l	6.6	250	Max. 70*5			APHA 5220D Method	
	BOD	mg/l	7.6	50	Max. 20			APHA-5210B Method	
	Oil and Grease	mg/l	=	10	Max. 5			APHA-5520B Method	
	Cr	mg/l		0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*5	MPN/100ml	24000	400	Max 400			APHA-9221B Method	
SW-4	pН	*	6.82	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ⁻³	mg/l	176	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	3.72	-	;•;	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	3.3	250	Max. 70*5		Once in two	APHA 5220D Method	
	BOD	mg/l	5.04	50	Max. 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	-	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	-	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*5	MPN/100ml	90000	400	Max 400			APHA-9221B Method	
GW-1	pН	¥	7.84			5.5~9.0		Instrument Analysis Method	
(Reference	SS	mg/l	24		None	50		APHA 2540D Method	
Point)	DO	mg/l	5.19	None (Available	(Available	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	< 0.7	Guideline	Guideline	60	Once in two	APHA 5220D Method	
	BOD	mg/l	2.74	value	Value	15	month	APHA-5210B Method	
Ew alex	Oil and Grease	mg/l	:=):	determined by	determined by	0.1		APHA-5520B Method	
NA DEVO	Cr	mg/l	B-0	MONREC)	MOI)	0.04		APHA-3120B Method	
Z	Total coliforms*6	MPN/100ml	1400			7.5×10³		APHA-9221B Method	

*1Remark: Referred to the Vietnam Standard (EIA Report), Reference to the Water Quality Monitoring Report, September 2016.

²Remark: In SW-1 and SW-5, suspended solids are higher than the standard due to the expected reason- surface water run-off from bare land in Zone A and influence by water from the downstream of the retention pond (SW-1) and retention canal (SW-5) due to flow back by tide fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the centralized wastewater treatment plant.

*3Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of suspended solids is higher than the standard due to two expected reason: i) delivered from upstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ and ii) delivered from downstream area by tidal effect.

⁴Remark: In SW-1 and SW-5, Total coliform are higher than the standard due to the expected reason- i) the biggest expected reason might natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the centralized wastewater treatment plant.

*5Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of total coliforms is higher than the standard due to two expected reason: i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area, and ii) delivered from downstream area by tidal effect.

*6Remark: For reference monitoring point (GW-1), the result of total coliform is higher than the standard due to expected reason for exceeding is infiltration of wastewater from toilet wastewater and /or animal waste.

*7Remarks: There is no current country standard but Ministry of Natural Recourses and Environmental Conservation submitted the National Emission Quality Guidelines (NEQG) for environmental guidelines. The guidelines filled as the country standards in the environmental monitoring form.

2)(b) Water Quality - October 2016

Measuring Point: Effluent of Wastewater

- Are there any effluents to water body in this monitoring period?

Yes,

No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard.

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-1	Temperature	°C	35	< 3 (increase)	Max 40			Instrument Analysis Method	
	pН	2	7	6-9	5.0-9.0			Instrument Analysis Method	
	SS ²	mg/l	982	50	Mas 30			APHA 2540D Method	
	DO	mg/l	4.76	-	≘	>=4		Instrument Analysis Method	
	BOD	mg/l	9.35	50	Max 20			APHA-5210B Method	
	COD(Cr)*6	mg/l	2380	250	Max 704*			APHA 5220D Method	
	Total Coliform*4	MPN/100ml	90000	400	Max 400	7.5×10³		APHA-9221B Method	
	T-N	mg/l	3.1	-	Max 80		Twice in one	HACH Method 10072	
	T-P	mg/l	0.606	2	2		year	APHA 4500-P E Method	
	Color	Co.Pt	8.75	×	Max 150			APHA-2120C Method	
	Odor	-	200	-				APHA-2150B Method	
	HS*12	mg/l	1.188	1	Max 1			HACH 8131 Method	
	Oil and Grease*7	mg/l	320.25	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.49	-	Max 1			HACH 8110 Method	
	Phenols	mg/l	0.032	0.5	Max 1			USEPA Method 420.1 Method	
NANADELE	Free Chlorine*10	mg/l	8	0.2	Max 1			APHA-4500CL G Method	
MITDE	Zinc	mg/l	0.054	2	Max 5			APHA-3120B Method	

★ OF Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-1	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	0.022	0.1	Max 0.25			APHA-3120B Method	
	Copper	mg/l	0.004	0.5	Max 1			APHA-3120B Method	
	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005			APHA-3120B Method	
	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03		Twice in one	APHA-3120B Method	
	Barium	mg/l	0.048	3	Max 1		year	APHA-3120B Method	
	Selenium	mg/l	≤ 0.001	0.1	Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.052	0.5	Max 0.2			APHA-3120B Method	
	Cyanide*9	mg/l	7	1	Max 1			HACH 8017 Method	
SW-5	Temperature	°C	33	< 3 (increase)	Max 40			Instrument Analysis Method	
	pН	-	7.5	6-9	5.0-9.0			Instrument Analysis Method	
	SS*2	mg/l	120	50	Mas 30			APHA 2540D Method	
	DO	mg/l	6.71	==0	=	>=4		Instrument Analysis Method	
	BOD	mg/l	4.48	50	Max 20			APHA-5210B Method	
	COD(Cr)	mg/l	4.6	250	Max 704*		Twice in one	APHA 5220D Method	
	Total Coliform*4	MPN/100ml	160000	400	Max 400	7.5×10³	year	APHA-9221B Method	
	T-N	mg/l	1.2	E\$11	Max 80			HACH Method 10072	
	T-P	mg/l	0.27	2	-			APHA 4500-P E Method	
	Color	Co.Pt	5.62	.=0	Max 150			APHA-2120C Method	
	Odor	=	1	-	3			APHA-2150B Method	

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-5	HS	mg/l	0.508	1	Max 1			HACH 8131 Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.202	2	Max 1			HACH 8110 Method	
	Phenois	mg/l	0.028	0.5	Max 1			USEPA Method 420.1 Method	
	Free Chlorine	mg/l	2.8	0.2	Max 1			APHA-4500CL G Method	
	Zinc	mg/l	0.042	2	Max 5			APHA-3120B Method	
	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	0.012	0.1	Max 0.25		Twice in one	APHA-3120B Method	
	Copper	mg/l	≤ 0.002	0.5	Max 1		year	APHA-3120B Method	
	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005			APHA-3120B Method	
	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03			APHA-3120B Method	
	Barium	mg/l	0.036	-	Max 1			APHA-3120B Method	
	Selenium	mg/l	≤ 0.01	0.1	Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.028	0.5	Max 0.2			APHA-3120B Method	
	Cyanide	mg/l	0.147	1	Max 1			HACH 8017 Method	
SW-6	Temperature	°C	30	< 3 (increase)	Max 40			Instrument Analysis Method	
	pН	×	7.5	6-9	5.0-9.0	_		Instrument Analysis Method	
	SS	mg/l	2	50	Mas 30		Twice in one	APHA 2540D Method	
NANA DEL	DO	mg/l	3.32	2	-	>=4	year	Instrument Analysis Method	
The state of the s	BOD	mg/l	3.32	50	Max 20	-		APHA-5210B Method	

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-6	COD(Cr)	mg/l	10.2	250	Max 70⁴*			APHA 5220D Method	
	Total Coliform	MPN/100ml	< 2	400	Max 400	7.5×10³		APHA-9221B Method	
	T-N	mg/l	7.4	•	Max 80			HACH Method 10072	
	T-P	mg/l	0.09	2	-			APHA 4500-P E Method	
	Color	Co.Pt	7	-20	Max 150			APHA-2120C Method	
	Odor	-	1	: ≥ :	2			APHA-2150B Method	
	HS	mg/l	< 0.005	1	Max 1			HACH 8131 Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.004	=	Max 1			HACH 8110 Method	
	Phenols	mg/l	0.004	0.5	Max 1		Twice in one	USEPA Method 420.1 Method	
	Free Chlorine	mg/l	0.1	0.2	Max 1		year	APHA-4500CL G Method	
	Zinc	mg/l	0.006	2	Max 5			APHA-3120B Method	
	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	≤ 0.01	0.1	Max 0.25			APHA-3120B Method	
	Copper	mg/l	≤ 0.002	0.5	Max 1			APHA-3120B Method	
	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005			APHA-3120B Method	
	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03			APHA-3120B Method	
	Barium	mg/l	0.014	(#)	Max 1			APHA-3120B Method	
	Selenium	mg/l	≤ 0.01	0.1	Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.012	0.5	Max 0.2			APHA-3120B Method	

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-6	Cyanide	mg/l	0.001	1	Max 1			HACH 8017 Method	
SW-2	Temperature	°C	29	< 3 (increase)	Max 40			Instrument Analysis Method	
(Reference	pН	-	6	6-9	5.0-9.0			Instrument Analysis Method	
Point)	SS ³	mg/l	36	50	Mas 30			APHA 2540D Method	
	DO	mg/l	4.62	-	**:	>=4		Instrument Analysis Method	
	BOD	mg/l	3.86	50	Max 20			APHA-5210B Method	
	COD(Cr)	mg/l	14.5	250	Max 704*			APHA 5220D Method	
	Total Coliform*5	MPN/100ml	30000	400	Max 400	7.5×10³		APHA-9221B Method	
	T-N	mg/l	0.8	-	Max 80			HACH Method 10072	
	T-P	mg/l	0.113	2	-			APHA 4500-P E Method	
	Color	Co.Pt	14.09	-	Max 150		Twice in one	APHA-2120C Method	
	Odor	-	2	-	V. 2€3		year	APHA-2150B Method	
	HS	mg/l	0.102	1	Max 1			HACH 8131 Method	
	Oil and Grease*8	mg/l	16.56	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.06	-	Max 1			HACH 8110 Method	
	Phenols	mg/l	0.022	0.5	Max 1			USEPA Method 420.1 Method	
	Free Chlorine	mg/l	0.7	0.2	Max 1			APHA-4500CL G Method	
	Zinc	mg/l	0.012	2	Max 5			APHA-3120B Method	
	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
HILAWADEVE	Arsenic	mg/l	≤ 0.01	0.1	Max 0.25			APHA-3120B Method	
MJTD	Copper	mg/l	≤ 0.002	0.5	Max 1			APHA-3120B Method	

Location Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-2	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005			APHA-3120B Method	
(Reference	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03			APHA-3120B Method	
Point)	Barium	mg/l	0.012	(5)	Max 1		Twice in one	APHA-3120B Method	
	Selenium	mg/l	≤ 0.01	0.1	Max 0.02		year	APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.002	0.5	Max 0.2			APHA-3120B Method	
	Cyanide	mg/l	0.031	1	Max 1			HACH 8017 Method	
SW-3	Temperature	°C	30	< 3 (increase)	Max 40			Instrument Analysis Method	
(Reference	pН	-	6	6-9	5.0-9.0			Instrument Analysis Method	
Point)	SS ³	mg/l	88	50	Mas 30			APHA 2540D Method	
	DO	mg/l	3.71	545	-			Instrument Analysis Method	
	BOD	mg/l	3.67	50	Max 20	>=4		APHA-5210B Method	
	COD(Cr)	mg/l	10.5	250	Max 704*			APHA 5220D Method	
	Total Coliform ^{*5}	MPN/100ml	28000	400	Max 400		Twice in one	APHA-9221B Method	
	T-N	mg/l	7.2	#≾	Max 80	7.5×10³	year	HACH Method 10072	
	T-P	mg/l	0.19	2	-			APHA 4500-P E Method	
	Color	Co.Pt	8.76	*	Max 150			APHA-2120C Method	
	Odor	*	2	:=:	-	22		APHA-2150B Method	
	HS	mg/l	0.264	1	Max 1			HACH 8131 Method	
	Oil and Grease*8	mg/l	11.38	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.128	* C	Max 1	3		HACH 8110 Method	

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	Phenols	mg/l	0.001	0.5	Max 1			USEPA Method 420.1 Method	
	Free Chlorine*11	mg/l	1.4	0.2	Max 1			APHA-4500CL G Method	
	Zinc	mg/l	0.014	2	Max 5			APHA-3120B Method	
	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	≤ 0.01	0.1	Max 0.25			APHA-3120B Method	
SW-3	Copper	mg/l	≤ 0.002	0.5	Max 1		Twice in one	APHA-3120B Method	
(Reference	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005		year	APHA-3120B Method	
Point)	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03			APHA-3120B Method	
	Barium	mg/l	0.08	-	Max 1			APHA-3120B Method	
	Selenium	mg/l	≤ 0.01	0.1	Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.01	0.5	Max 0.2			APHA-3120B Method	
	Cyanide	mg/l	0.076	1	Max 1			HACH 8017 Method	
SW-4	Temperature	°C	30	< 3 (increase)	Max 40			Instrument Analysis Method	
(Reference	pН	*	6	6-9	5.0-9.0			Instrument Analysis Method	
Point)	SS ⁷³	mg/l	82	50	Mas 30			APHA 2540D Method	
	DO	mg/l	4.2	-		>=4		Instrument Analysis Method	
	BOD	mg/l	3.87	50	Max 20			APHA-5210B Method	
	COD(Cr)	mg/l	11	250	Max 704*		Twice in one	APHA 5220D Method	
MANADEVE	Total Coliform*5	MPN/100ml	160000	400	Max 400	7.5×10³	year	APHA-9221B Method	
MITT	N N	mg/l	7.2	<u> </u>	Max 80			HACH Method 10072	

Myanmar Japan Thilawa Development Limited

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	T-P	mg/l	0.171	2	E			APHA 4500-P E Method	
	Color	Co.Pt	8.25	: €0.	Max 150			APHA-2120C Method	
	Odor	-	1	3	8			APHA-2150B Method	
	HS	mg/l	0.243	1	Max 1			HACH 8131 Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	0.137	-	Max 1			HACH 8110 Method	
SW-4	Phenols	mg/l	0.007	0.5	Max 1			USEPA Method 420.1 Method	
(Reference	Free Chlorine*11	mg/l	1.3	0.2	Max 1	1		APHA-4500CL G Method	
Point)	Zinc	mg/l	0.022	2	Max 5			APHA-3120B Method	
	Chromium	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	≤ 0.01	0.1	Max 0.25		Twice in one	APHA-3120B Method	
	Copper	mg/l	≤ 0.002	0.5	Max 1		year	APHA-3120B Method	
	Mercury	mg/l	≤ 0.00054	0.01	Max 0.005			APHA-3120B Method	
	Cadmium	mg/l	≤ 0.001	0.1	Max 0.03			APHA-3120B Method	
	Barium	mg/l	0.018	:=0	Max 1			APHA-3120B Method	
	Selenium	mg/l	≤ 0.01	0.1	Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002	0.1	Max 0.2			APHA-3120B Method	
	Nickel	mg/l	0.01	0.5	Max 0.2			APHA-3120B Method	
	Cyanide	mg/l	0.069	1	Max 1			HACH 8017 Method	
GW-1	Temperature	°C	34	None	Max 40			Instrument Analysis Method	
	pН		8	(Available	5.0-9.0			Instrument Analysis Method	

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
GW-1	SS	mg/l	12	Guideline	Mas 30			APHA 2540D Method	
(Reference	DO	mg/l	5.56	value	3	>=4	Twice in one	Instrument Analysis Method	
Point)	BOD	mg/l	3.34	determined by	Max 20		year	APHA-5210B Method	
	COD(Cr)	mg/l	5	MONREC)	Max 704*			APHA 5220D Method	
	Total Coliform	MPN/100ml	< 2		Max 400	7.5×10³		APHA-9221B Method	
	T-N	mg/l	0.7		Max 80			HACH Method 10072	
	T-P	mg/l	0.089		-			APHA 4500-P E Method	
	Color	Co.Pt	4.46		Max 150			APHA-2120C Method	
	Odor	-	1		2			APHA-2150B Method	
	HS	mg/l	< 0.005		Max 1			HACH 8131 Method	
	Oil and Grease	mg/l	< 3.1		Max 5			APHA-5520B Method	
	Formaldehyde	mg/l	< 0.003		Max 1			HACH 8110 Method	
	Phenols	mg/l	0.015		Max 1	_		USEPA Method 420.1 Method	
	Free Chlorine	mg/l	0.1		Max 1		Twice in one	APHA-4500CL G Method	
	Zinc	mg/l	0.01		Max 5		year	APHA-3120B Method	
	Chromium	mg/l	≤ 0.002		Max 0.5			APHA-3120B Method	
	Arsenic	mg/l	≤ 0.01		Max 0.25			APHA-3120B Method	
	Copper	mg/l	≤ 0.002		Max 1			APHA-3120B Method	
	Mercury	mg/l	≤ 0.00054		Max 0.005			APHA-3120B Method	
NADEV	Cadmium	mg/l	≤ 0.001		Max 0.03			APHA-3120B Method	
AND THE STREET	Bartum	mg/l	0.092		Max 1	-		APHA-3120B Method	-

Location	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	Selenium	mg/l	≤ 0.01		Max 0.02			APHA-3120B Method	
	Lead	mg/l	≤ 0.002		Max 0.2			APHA-3120B Method	F3
	Nickel	mg/l	≤ 0.002		Max 0.2			APHA-3120B Method	
	Cyanide	mg/l	0.002		Max 1			HACH 8017 Method	

^{*1}Remark: Referred to the Vietnam Standard (EIA Report), Reference to the Water Quality Monitoring Report, October 2016.

^{*2}Remark: In SW-1 and SW-5, suspended solids are higher than the standard due to the expected reason- surface water run-off from bare land in Zone A and influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the centralized wastewater treatment plant.

*3Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of suspended solids are higher than the standard due to two expected reason: i) delivered from upstream area such as natural origin and wastewater from the other industrial area outside of Thilawa SEZ and ii) delivered from downstream area by tidal effect.

^{*4}Remark: In SW-1 and SW-5, Total coliform are higher than the standard due to the expected reason- i) the biggest expected reason might natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds and small animals in and along the retention canals and retention pond and the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

⁵Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of total coliform is higher than the standard due to two expected reason: i) runoff of animal waste from the undeveloped area ad delivered from industrial from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area and ii) delivered from downstream area by tidal effect.

*6Remark: In SW-1, COD(Cr) is higher than the standard due to the expected reason- analytical error as positive interference by high concentration of oil and grease. In case of oil and grease are containing sample, the analytical method commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

*7Remark: In SW-1, Oil and grease is higher than the standard due to the expected reason- i) accidental spillage of oil and grease to retention pond (SW-1) and ii) influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation. The accident spillage of oil and grease to retention pond (SW-1) is attached in the appendix of accident case in detail report.

*8Remark: For reference monitoring points (SW-2 and SW-3), the result of oil and grease is higher than the standard due to expected reason- accident spillage of oil and grease to retention pond (SW-1) and these spillages may be flowing up to SW-1 and flowing out to SW-3 during high tide, upstream of Shwe Pyauk creek. The detail information is attached in water quality monitoring report, October 2016.

"9Remark: In SW-1, Cyanide is higher than the standard due to the expected reason: analytical error due to positive interference by high concentration of oil and grease. Since any factories in Thilawa SEZ Zone A have not utilized and produced cyanide in their processes, it is better to consider the reason of exceeded the target value might be an analytical error. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

*10Remark: In SW-1, Free chlorine is higher than the standard due to the expected reason - the result of the free chlorine has a possibility of positive interference from foreign substances in sample. If the water sample containing high turbidity, color and oil and grease, the analysis of free chlorine might be affected as positive interference. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

*11Remark: For reference monitoring points (SW-3 and SW-4), the result of free chlorine is higher than the standard due to the expected reason- the possibility of positive interference from foreign substances in sample. If the water sample contained high level of turbidity, color and oil and grease, the analysis of free chlorine might be affected as positive interference. These analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

**Remark: In SW-1, sulphide is higher than the standard due to the expected reason- analytical error as positive interference by high concentration of oil and grease. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

Measuring Point: Effluent of Wastewater

- Are there any effluents to water body in this monitoring period?

Yes,

No If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard.

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-1	pН	*	8.8	6-9	5.0-9.0			Instrument Analysis Method	
	SS*2	mg/l	166	50	Max 30			APHA 2540D Method	
	DO	mg/l	7.4		17	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	9.5	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	4.2	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Cr	mg/l	0.014	0.5	Max 0.5			APHA-3120B Method	
	Total coliforms*4	MPN/100ml	92000	400	Max 400	7.5×10³		APHA-9221B Method	-
SW-5	pН	-	8.6	6-9	5.0-9.0		-	Instrument Analysis Method	
	SS*2	mg/l	34	50	Max 30			APHA 2540D Method	
	DO	mg/l	5.5	Ē	â	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	23.5	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	7.9	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	3.5	10	Max 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max 0.5		22	APHA-3120B Method	
	Total coliforms*4	MPN/100ml	92000	400	Max 400	7.5×10³		APHA-9221B Method	

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-6	pН	:(=	7.3	6-9	5.0-9.0			Instrument Analysis Method	
	SS	mg/l	8	50	Max 30			APHA 2540D Method	
	DO	mg/l	3.5	-	16	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	9.1	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	0	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Total coliforms	MPN/100ml	< 1.8	400	Max 400	7.5×10³		APHA-9221B Method	
SW-2	pН		7.4	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ³	mg/l	462	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	5.4		-			Instrument Analysis Method	
	COD(Cr)	mg/l	8.4	250	Max. 70°5	>=4	Once in two	APHA 5220D Method	
	BOD	mg/l	5	50	Max. 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	0.03	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*5	MPN/100ml	92000	400	Max 400			APHA-9221B Method	
SW-3	pН	-	7.6	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS®	mg/l	384	50	Max.30	>=4		APHA 2540D Method	
Point)	DO	mg/l	8.6	_	2		Once in two	Instrument Analysis Method	
AMILANADEVEL	COD(Cr)	mg/l	11.2	250	Max. 70*5		month	APHA 5220D Method	
MJTD	BOD	mg/l	3.6	50	Max. 20			APHA-5210B Method	

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-3	Oil and Grease	mg/l	< 3.1	10	Max. 5			APHA-5520B Method	
(Reference	Cr	mg/l	0.03	0.5	Max. 0.5			APHA-3120B Method	
Point)	Total coliforms*5	MPN/100ml	54000	400	Max 400			APHA-9221B Method	
SW-4	pН		7.5	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ⁻³	mg/l	494	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	6.3	~	-	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	6.9	250	Max. 70*5		Once in two	APHA 5220D Method	
	BOD	mg/l	6.2	50	Max. 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	0.036	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*5	MPN/100ml	92000	400	Max 400			APHA-9221B Method	
GW-1	pН	-	8.1			5.5~9.0		Instrument Analysis Method	
(Reference	SS	mg/l	10		None	50		APHA 2540D Method	
Point)	DO	mg/l	7	None (Available	(Available	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	2.7	Guideline	Guideline	60	Once in two	APHA 5220D Method	
	BOD	mg/l	6.2	value	Value	15	month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	determined by	determined by	0.1		APHA-5520B Method	
	Cr	mg/l	≤ 0.002	MONREC)	MOI)	0.04		APHA-3120B Method	
	Total coliforms	MPN/100ml	< 1.8			7.5×10³		APHA-9221B Method	

1*Remark: Referred to the Vietnam Standard (EIA Report).

^{*2}Remark: In SW-1 and SW-5, suspended solids are higher than the standard due to the expected reason- surface water run-off from bare land in Zone A and influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the sewage treatment plant.

*3Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of suspended solids is higher than the standard due to two expected reason: i) delivered from upstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ and ii) delivered from downstream area by tidal effect.

*4Remark: In SW-1 and SW-5, Total coliform are higher than the standard due to the expected reason- i) the biggest expected reason might natural bacteria existed in all area of Zone-A because there are various kinds of vegetation and creature such as birds and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the sewage treatment plant.

*5Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of total coliforms is higher than the standard due to two expected reason: i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area and ii) delivered from downstream area by tidal effect.

2)(d) Water Quality - February 2017

Measuring Point: Effluent of Wastewater

- Are there any effluents to water body in this monitoring period? ✓ Yes, □ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard.

nm

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
SW-1	pН	-	8.2	6-9	5.0-9.0		Once in two	Instrument Analysis Method	
THILAWADEL	SS ²²	mg/l	272	50	Max 30		month	APHA 2540D Method	

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	DO	mg/l	6.8	-	-	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	12.9	250	Max 70			APHA 5220D Method	
	BOD	mg/l	4.07	50	Max 20			APHA-5210B Method	
	Oil and Grease*7	mg/l	5.45	10	Max 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max 0.5	-		APHA-3120B Method	
	Total coliforms*4	MPN/100ml	92,000	400	Max 400	7.5×10³		APHA-9221B Method	16.
SW-5	pН	-	8.7	6-9	5.0-9.0			Instrument Analysis Method	
	SS*2	mg/l	30	50	Max 30			APHA 2540D Method	
	DO	mg/l	7.8	/ = .	-	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	17.4	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	4.02	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max 0.5			APHA-3120B Method	
	Total coliforms*4	MPN/100ml	820	400	Max 400	7.5×10³		APHA-9221B Method	
SW-6	pН	-	7.4	6-9	5.0-9.0			Instrument Analysis Method	
	SS	mg/l	18	50	Max 30	>=4		APHA 2540D Method	
	DO	mg/l	5.7		7			Instrument Analysis Method	
	COD(Cr)	mg/l	< 0.7	250	Max 70		Once in two	APHA 5220D Method	
	BOD	mg/l	2.69	50	Max 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max 0.5	7.5×10³		APHA-3120B Method	

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	Total coliforms*4	MPN/100ml	4900	400	Max 400			APHA-9221B Method	
SW-2	рН	×	7.4	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS7	mg/l	1400	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	6	_		>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	48	250	Max. 70*5	7	Once in two	APHA 5220D Method	
	BOD	mg/l	4.42	50	Max. 20		month	APHA-5210B Method	
	Oil and Grease*8	mg/l	5.64	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	≤ 0.002	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*6	MPN/100ml	> 160,000	400	Max 400	e1		APHA-9221B Method	
SW-3	рН	2	7.4	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ^{r3}	mg/l	2002	50	Max.30			APHA 2540D Method	
Point)	DO	mg/l	6.3	-	2	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	10.8	250	Max. 70*5		Once in two	APHA 5220D Method	
	BOD	mg/l	5.83	50	Max. 20		month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	0.082	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*6	MPN/100ml	> 160,000	400	Max 400			APHA-9221B Method	
SW-4	рН	-	7.4	6-9	5.0-9.0			Instrument Analysis Method	
(Reference	SS ⁻¹	mg/l	16	50	Max.30	>=4	Once in two	APHA 2540D Method	
Point) ADE	DO	mg/l	5.8	-	A		month	Instrument Analysis Method	
MJTD	COD(Cr)	mg/l	18.4	250	Max. 70*5			APHA 5220D Method	

Location*2	Item	Unit	Measured Value	Country's Standard	Target value to be applied	*1Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	BOD	mg/l	4.18	50	Max. 20			APHA-5210B Method	
	Oil and Grease	mg/l	4.73	10	Max. 5			APHA-5520B Method	
	Cr	mg/l	0.134	0.5	Max. 0.5			APHA-3120B Method	
	Total coliforms*6	MPN/100ml	> 160,000	400	Max 400			APHA-9221B Method	
GW-1	рН	1.5	7.7			5.5~9.0		Instrument Analysis Method	
(Reference	SS	mg/l	2		None	50		APHA 2540D Method	
Point)	DO	mg/l	5.9	None (Available	(Available	>=4		Instrument Analysis Method	
	COD(Cr)	mg/l	6.7	Guideline	Guideline	60	Once in two	APHA 5220D Method	
	BOD	mg/l	2.42	value	Value	15	month	APHA-5210B Method	
	Oil and Grease	mg/l	< 3.1	determined by	determined by	0.1		APHA-5520B Method	
	Cr	mg/l	≤ 0.002	MONREC)	MOI)	0.04		APHA-3120B Method	
	Total coliforms	MPN/100ml	13			7.5×10³		APHA-9221B Method	

^{1*}Remark: Referred to the Vietnam Standard (EIA Report).

²Remark: In SW-1, suspended solids are higher than the standard due to the expected reason- surface water run-off from bare land in Zone A and influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation. The result at the outlet or effluent of centralized wastewater treatment plant (SW-6) is complied with the standard and effluent from each locator were treated well by the STP.

^{*3}Remark: For reference monitoring points (SW-2 and SW-3), the result of suspended solids is higher than the standard due to two expected reason: i) delivered from upstream area such as natural origin and wastewater from the local industrial zone outside of Thilawa SEZ and ii) delivered from downstream area by tidal effect.

^{*4}Remark: In SW-1 and SW-5, Total coliform are higher than the standard due to the expected reason- i) the biggest expected reason might natural bacteria existed in all area of Zone-A because there are various kinds of vegetation and creature such as birds and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

*5Remark: In SW-6, Total coliform are higher than the standard due to the expected reason- a possible reason for exceeding the targeted value is that retained water did not contact sufficiently with chlorine in the chlorine injection tank before discharging to outlet of the centralized STP at the time of sampling

*6Remark: For reference monitoring points (SW-2, SW-3 and SW-4), the result of total coliforms is higher than the standard due to two expected reason: i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area and ii) delivered from downstream area by tidal effect.

*7Remark: In SW-1, oil and grease is higher than the standard sue to the expected reason – influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation.

*Remark: In SW-2, oil and grease is higher than the standard sue to the expected reason – oil contaminated water from the local industrial zone outside of Thilawa SEZ and delivered from downstream area by tidal effect.

3) Soil Contamination (only operation phase)

Situations environmental report from tenants

- Are there any serious issues regarding soil contamination in this monitoring period?

<u>
□ Yes, □ Yes, □ No</u>

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Issues on Soil Contamination	Countermeasures

4) Noise

Remarks: According to EIA report, Chapter 4- Table 4-2.2, monitoring plan is one time each in dry and wet season (First 3 years after operation stage). In the environmental monitoring report (Phase-1, operation phase) No.1, one time noise and vibration monitoring survey is finished as a record and there is no excess the standard in all of survey points. There is not much operation stage industry in current and monitoring will start after consult with environmental expert.

Noise Leve	el (Along t	he Thil	awa Develop	ment Road) Measured						
Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max)	Country's Standard	Target value to be applied	*Referred International Standard	Frequency	Method	Note (Reason of excess of th standard)
TNV-1	Leq (day)	dB(A)			27/4		75	Once (peak	Sound Level	
1111	Leq(eve)	dB(A)			N/A	N/A	70	period)	Meter	

^{*}Remark: Referred to the Japan Standard (EIA Report).

Noise Level (Living Environment-Near Monastery)

Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max)	Country's Standard	*Target value to be applied	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
TNV-2	Leq (day)	dB(A)			N/A	75	Singapore	Once in 3 months	Sound Level Meter	
	Leq(eve)	dB(A)				60				
	Leq(night)	dB(A)				55				
	Leq(day)	dB(A)				75		Once in 3	Sound level Meter	
TNV-3	Leq(eve)	dB(A)			N/A	60	Singapore			
	Leq(night)	dB(A)				55		months		

^{*}Remark: Referred to the Singapore Target Noise Standard (EIA Report).

Complains from Residents

- Are there any complains from residents regarding noise in this monitoring period? <u>— Yes</u>, <u> No</u> If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Complains from Residents	Countermeasures

5) (a) Solid Waste (Disposal of Domestic Waste from Contractor)

Measuring Point: Construction Site (Construction Phase), Storage for Sludge (Operation Phase)

- Are there any wastes of sludge in this monitoring period? $\square \underline{Yes}, \square \underline{No}$

If yes, please report the amount of sludge and fill in the results of solid waste management Activities.

No.	Date	Description	No. of Loads	Remarks
1	3-Nov-2016	Waste Disposal	6	YCDC
2	6-Jan-207	Waste Disposal (Sewage)	3	YCDC
3	29-Jan-2017	Waste Disposal	5	YCDC

Remark: Attached waste disposal record (Construction Monthly Progress Report) in appendix.

Each locator will submit according to ECPP approval for the waste disposal record directly to the Environmental Section, One Stop Service Center, Thilawa SEZ Management Committee.

5) (b) Solid Waste (Disposal from admin complex compound)

Measuring Point: Construction Site (Construction Phase), Storage for Sludge (Operation Phase)

- Are there any wastes of sludge in this monitoring period? ☑ Yes, □ No

If yes, please report the amount of sludge and fill in the results of solid waste management Activities.

No.	Date	Description	No. of Kgs	Remarks
1	3-Oct-2016	General Waste Disposal	1160	Golden Dowa Eco-system Myanmar Co.,Ltd
2	25- Oct-2016	General Waste Disposal	1620	Golden Dowa Eco-system Myanmar Co.,Ltd
3	30 Nov-2016	General Waste Disposal	1120	Golden Dowa Eco-system Myanmar Co.,Ltd
4 LAW	5-Jan-2017	General Waste Disposal	1060	Golden Dowa Eco-system Myanmar Co.,Ltd
SM.	9-Feb-2017	General Waste Disposal	680	Golden Dowa Eco-system Myanmar Co.,Ltd

6	10-Feb-2017	General Waste Disposal	760	Golden Dowa Eco-system Myanmar Co.,Ltd
7	16-Mar-2017	General Waste Disposal	960	Golden Dowa Eco-system Myanmar Co.,Ltd
8	17-Mar-2017	General Waste Disposal	720	Golden Dowa Eco-system Myanmar Co.,Ltd

Remark: Attached general waste disposal record (Admin Complex Compound) in appendix.

Remark: Admin complex compound waste disposal reported in the Operation phase, Environmental Monitoring Report because the waste from common area of Thilawa SEZ is storing in the admin complex trash storage.

6) (a) Ground Subsidence and Hydrology-October 2016

Duration (Mook)	Water Consumption		Ground Level		7	
Duration (Week)	Quantity	Unit	Quantity	Unit	Frequency	Note
6-Oct-2016	123	m3/week	+ 6.996	m		
13-Oct-2016	144	m3/week	+ 6.995	m		
20-Oct-2016	130	m3/week	+ 6.993	m	Once a week	
27-Oct-2016	136	m3/week	+ 6.994	m		

^{*} Remarks: Attached ground subsidence and ground water usage monitoring status (Construction Monthly Progress Report) in appendix.

(b) Ground Subsidence and Hydrology-November 2016

Duration (Week)	Water Consumption		Ground Level			
Duration (vveek)	Quantity	Unit	Quantity	Unit	Frequency	Note
3-Nov-2016	126	m3/week	+ 6.994	m		
10-Nov-2016	132	m3/week	+ 6.995	m		
17-Nov-2016	117	m3/week	+ 6.995	m	Once a week	
24-Nov-2016	109	m3/week	+ 6.996	m		

^{*} Remarks: Attached ground subsidence and ground water usage monitoring status (Construction Monthly Progress Report) in appendix.

(c) Ground Subsidence and Hydrology-December 2016

Describer (March)	Water Consumption		Groun	d Level	Fraguangu	Note
Duration (Week)	Quantity	Unit	Quantity	Unit	Frequency	14016
1-Dec-2016	110	m3/week	+ 6.996	m		
8-Dec-2016	131	m3/week	+ 6.994	m		
15-Dec-2016	127	m3/week	+ 6.994	m	Once a week	
22-Dec-2016	123	m3/week	+ 6.995	m		
29-Dec-2016	114	m3/week	_*1	m		

^{*} Remarks: Attached ground subsidence and ground water usage monitoring status (Construction Monthly Progress Report) in appendix.

(d) Ground Subsidence and Hydrology-January 2017

Duration (Week)	Water Consumption		Ground Level		Evo eu on ev	Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
5-Jan-2017	112	m3/week	+ 6.994	m		
12-Jan-2017	107	m3/week	+ 6.994	m		
19-Jan-2017	123	m3/week	+ 6.995	m	Once a week	
26-Jan-2017	115	m3/week	+ 6.996	m		

^{*} Remarks: Attached ground subsidence and ground water usage monitoring status (Construction Monthly Progress Report) in appendix.

(e) Ground Subsidence and Hydrology-February 2017

Duration (Week)	Water Consumption		Ground Level		Two accompany	Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
2-Feb-2017	104	m3/week		m		
MJ9-Feb-2017	98	m3/week	75	m	Once a week	

¹Remarks: Ground level was not measuring in 29-Dec-2016 because of no working in public holiday (Karen New Year).

16-Feb-2017	107	m3/week	4	m
23-Feb-2017	124	m3/week	· ·	m

^{*} Remarks: Attached ground subsidence and ground water usage monitoring status (Construction Monthly Progress Report) in appendix.

(f) Ground Subsidence and Hydrology-July 2016

Duration (Week)	Water Consumption		Ground Level		-	
	Quantity	Unit	Quantity	Unit	Frequency	Note
15-Jul-2016	·	m3/week	+ 7.137	m		
22-Jul-2016	-	m3/week	+ 7.136	m	Once a week	
29-Jul-2016	*	m3/week	+ 7.136	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(g) Ground Subsidence and Hydrology-August 2016

Duration (Week)	Water Consumption		Ground Level		_	
	Quantity	Unit	Quantity	Unit	Frequency	Note
5-Aug-2016	120	m3/week	+ 7.136	m		
12-Aug-2016		m3/week	+ 7.136	m	Once a week	
19-Aug-2016	:#	m3/week	+ 7.136	m		
26-Aug-2016	-	m3/week	+ 7.136	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(h) Ground Subsidence and Hydrology-September 2016

Duration (Week)	Water Consumption		Ground Level		F	Mata
	Quantity	Unit	Quantity	Unit	Frequency	Note
2-Sept-2016	Ė	m3/week	+ 7.136	m		
9-Sept-2016	2	m3/week	+ 7.136	m	Once a week	
16-Sept-2016	ē.	m3/week	+ 7.136	m		
23-Sept-2016	ž	m3/week	+ 7.136	m		
30-Sept-2016	<u>-</u>	m3/week	+ 7.136	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(i) Ground Subsidence and Hydrology-October 2016

Describes (MAZ-12)	Water Consumption		Ground Level		F	Mata
Duration (Week)	Quantity	Unit	Quantity	Unit	Frequency	Note
7-Oct-2016	*:	m3/week	+ 7.136	m		
14-Oct-2016	-	m3/week	+ 7.136	m		
21-Oct-2016	-	m3/week	+ 7.136	m	Опсе а week	
28-Oct-2016	<u></u>	m3/week	+ 7.136	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(j) Ground Subsidence and Hydrology-November 2016

Duration (Week)	Water Consumption		Ground Level		E	Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
4-Nov-2016	*	m3/week	+ 7.136	m		
11-Nov-2016	=,	m3/week	+ 7.136	m		
18-Nov-2016		m3/week	+ 7.136	m	Once a week	
Nov-2016	-20	m3/week	+ 7.138	m		

Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(k) Ground Subsidence and Hydrology-December 2016

Duration (Mods)	Water Consumption		Ground Level		Г	21.4
Duration (Week)	Quantity	Quantity Unit Quantity		Unit	Frequency	Note
2-Dec-2016	72	m3/week	+ 7.136	m		
9-Dec-2016		m3/week	+ 7.136	m		
16-Dec-2016	\ _	m3/week	+ 7.135	m	Once a week	
23-Dec-2016	(5)	m3/week	+ 7.133	m		
30-Dec-2016	s E	m3/week	+ 7.133	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(l) Ground Subsidence and Hydrology-January 2017

Ouration (Week)	Water Consumption		Ground Level			
	Quantity	Unit	Unit Quantity Unit		Frequency	Note
6-Jan-2017	:=:	m3/week	+ 7.134	m		
13-Jan-2017	(s=)	m3/week	+ 7.134	m		
20-Jan-2017	5 2 6	m3/week	+ 7.134	m	Once a week	
27-Jan-2017		m3/week	+ 7.134	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(m) Ground Subsidence and Hydrology-February 2016

Duration (Week)	Water Consumption		Ground Level		Т.	37.4
	Quantity	Unit Quantity		Unit	Frequency	Note
3-Feb-2017	4	m3/week	+ 7.134	m		
10-Feb-2017		m3/week	+ 7.134	m		
17-Feb-2017	3	m3/week	+ 7.134	m	Once a week	
24-Feb-2017		m3/week	+ 7.134	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

(n) Ground Subsidence and Hydrology-March 2017

Duration (Week)	Water Consumption		Ground Level		Fraguenay	Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
3-Mar-2017	a a	m3/week	+ 7.134	m		
10-Mar-2017		m3/week	+ 7.134	m		
17-Mar-2017	-	m3/week	+ 7.138	m	Once a week	
24-Mar-2017	7	m3/week	+ 7.138	m		
31-Mar-2017	-	m3/week	+ 7.138	m		

^{*} Remarks: Attached ground subsidence monitoring status (Operation Phase) in appendix.

7) Offensive Odor (only operation phase) Not Applicable at Construction Phase Report Complains from Residents

- Are there any complains from residents regarding offensive odor in this monitoring period? <u>— Yes, — Monor in the second of th</u>

Situations environmental report from tenants Not Applicable at Construction Phase Report

- Are there any serious issues regarding offensive odor in this monitoring period? □ Yes, □ No

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Issues on Soil Contamination	Countermeasures
AMARIE	

8) Infectious disease, Working Environment, Accident

Information from contractor (construction phase) or tenants (operation phase)

- Are there any incidents regarding Infectious disease, Working Environment, Accident in this monitoring period?

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

☑ Yes, □ No

Contents of Incidents	Countermeasures
An Accident was occurred on 28th November 2016 near main	MJTD take the action as per following:
gate. The two motor bikes hit near main gate. Nobody got	- Remind to drive carefully in future and explained the traffic rules
injured and one motor bike front cover was broken.	- Both parties negotiated successfully without police involvement.
An Accident was occurred on 15th December 2016 near B-3 plot.	MJTD take the action as per following:
The tricycle was small firing cause of wiring shock near main	- Helped and killed the fire
gate. Nobody got injured and tricycle was broken.	- Remind for regular maintenance for vehicle
	- The fire was extinguished by security guards.
An Accident was occurred on 26th December 2016 near main	MJTD take the action as per following:
gate. Two vehicles were hit near main gate. Nobody got injured	- Remind to reduce speed and explained the traffic rules
and no big damage.	Both parties negotiated successfully without police involvement
An Accident was occurred on 29th December 2016 near Plot C-5	MJTD take the action as per following:
and C-6. Motor bike hit the people near Plot C-5 and C-6. The	- Send the injured person to clinic by emergency car
girls who got injured her back waist and both hands and send	- Arranged the required facilities to injured person by bike driver.
to the clinic.	- Bike driver took full responsibility of victim and bear all the medical cost and one month salary.
An Accident was occurred on 4th January 2017 in front of Plot	MJTD take the action as per following:
B21. Motor bike and truck were hit in front of Plot B21. Nobody	- Remind to reduce speed and explained the traffic rules
got injured and motor bike damages.	- Both parties negotiated successfully without police involvement.
An Accident was occurred on 5th January 2017 in front of Plot	MJTD take the action as per following:
B21. Truck was hit to the Road lamp post in front of Plot B21.	- Remind to reduce speed and explained the traffic rules
Nobody got injured and only road lamp post damage.	- Repairing the road lamp post

Contents of Incidents	Countermeasures
An Accident was occurred on 14th January 2017 near Plot B-10.	MJTD take the action as per following:
The motor bike was hit the platform near Plot B-10. A small	- Remind to drive carefully in future and explained the traffic rules
injury got injured and no big damage.	
An Accident was occurred on 16th January 2017 near main gate.	MJTD take the action as per following:
Two motor bikes were hit near main gate. Nobody got injured	- Remind to reduce speed, drive carefully and explained the traffic rules
and got a little damage of motor bike.	- Both parties negotiated successfully without police involvement
An Accident was occurred on 16th January 2017 at the corner of	MJTD take the action as per following:
B20. Two motor bikes were hit at the corner of B20. One person	- Send the injured person to clinic by emergency car
got head injured and another person was broken the chin.	- Remind to reduce speed and explained the traffic rules
	- Both parties negotiated successfully without police involvement
An Accident was occurred on 26th January 2017 near main gate.	MJTD take the action as per following:
Two motor bikes were skidded and overturned near main gate.	- Remind to reduce speed, drive carefully and explained the traffic rules
Nobody got injured and a little damage of motor bike.	- Both parties negotiated successfully without police involvement
An Accident was occurred on 9th March 2017 at the Plot-B18-2	MJTD take the action as per following:
Fire case was happened at Plot-B18-2. Nobody got injured and	- Arranged and provided the required facilities to site for firefighting.
burned some the materials.	- Secure and clear the traffic with the victim of fire
	- Remind and make sure the fire safety plan and emergency plan
An Accident was occurred on 20th March 2017 near Plot-B10.	MJTD take the action as per following:
Vehicle and motor bike were hit near Plot-B10. Motor bike	- Remind to reduce speed, drive carefully and explained the traffic rules
driver and his friend got some injured and a little damaged the	- Negotiation and investigation by the police department.
vehicle and motor bike.	

Note: If emergency incidents are occurred, the information shall be reported to the relevant organizations and authorities immediately.

The above accidents have been reported to One Stop Service Center (OSSC) and Thilawa SEZ Management Committee (TSMC).

End of Document

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Water and Waste Water Monitoring Report
September, 2016

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE A (PHASE 1 OPERATION STAGE)

(Bi-Monthly Monitoring)

September 2016

Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 General
CHAPTER 2: WATER QUALITY MONITORING2
2.1 Monitoring Items2
2.2 Description of Sampling Points
2.3 Monitoring Method
2.4 Monitoring Period4
2.5 Monitoring Results4
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS8
APPENDIX-1 FIELD SURVEY PHOTOS1
APPENDIX-2 LABORATORY RESULTS1
LIST OF TABLES
Table 2.1-1 Monitoring Items for Water Quality
Table 2.2-1 Outline of Sampling Points
Table 2.3-1 Analytic Method for Water Quality4
Table 2.4-1 Sampling Time of Each Station
Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged
from Centralized (STP)
Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison
with Discharging Points and Baseline of Discharged Creek
LIST OF FIGURES
EL OP MENT
Location of Sampling Points of Water Quality Monitoring

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone A in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total seven sampling points are set for water quality survey, named SW-1, SW-2, SW-3, SW-4, SW-5, SW-6, and GW-1 have been monitored in Thilawa SEZ Zone A and its surrounding area in timely manner. Among the seven locations, SW-1, SW-5 are main discharging gates and SW-6 is discharging from centralized Sewage Treatment Plant (STP) which is required to monitor by Environmental Monitoring Plan (EMoP) in EIA report of Thilawa SEZ Zone A. The remaining points SW-2, SW-3 and SW-4 are sampled as a reference monitoring for comparison with discharging points and baseline of discharged creek. Moreover, GW-1 is monitored as a reference of existing tube well which located in the monastery compound. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined so as to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at seven locations. Among the seven locations, water flow measurement was carried out at three locations (SW-1, SW-5, and SW-6) where can be measured by flow rate instrument. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	GW-1	Remarks
1	pН	0	0	0	0	0	0	0	On-site analysis
2	Water Temperature	0	0	0	0	0	0	0	On-site analysis
3	DO	0	0	0	0	0	0	0	On-site analysis
4	BOD	0	0	0	0	0	0	0	Laboratory analysis
5	COD	0	0	0	0	0	0	0	Laboratory analysis
6	Total nitrogen	0	0	0	0	0	0	0	Laboratory analysis
7	Suspended solids	0	0	0	0	0	0	0	Laboratory analysis
8	Total coliform	0	0	0	0	0	0	0	Laboratory analysis
9	Total phosphorous	0	0	0	0	0	0	0	Laboratory analysis
10	Color	0	0	0	0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	0	0	0	Laboratory analysis
12	Flow Rate	0	-	-	-	0	0	=	On-site analysis

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
		Coordinate- N-16° 40' 13.5", E- 96° 16' 39.8"
1	SW-1	Location - Outlet of Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 06.0", E- 96° 16' 43.1"
2	SW-2	Location - Upstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
		Coordinate- N-16° 40' 05.5", E- 96° 16' 41.6"
3	SW-3	Location - Upstream of Shwe Pyauk Creek, after combining with the disposal discharge from MJTD.
		Survey Item – Surface water sampling.
		Coordinate- N-16° 39' 54.6", E- 96° 16' 26.4"
4	SW-4	Location - Downstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
		Coordinate- N-16° 40' 10.7", E- 96° 16' 22.6"
5	SW-5	Location - Outlet of Retention Canal
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 26.8", E-96° 16' 30.7"
6	SW-6	Location - Outlet from STP to Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
VA Da		Coordinate- N-16° 40' 25.1", E- 96° 16' 31.7"
MARKEY	GW-1	Location - In Moegyoe Swan Monastery
	C	Survey Item – Ground Water Sampling

SW-1

SW-1 was collected at the discharge point of retention pond which is located in the east of Moegyoe swan monastery. This drainage is flowing from north to south and then connected to the Shwe Pyauk creek through earth drain. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation. In addition, it seems that a part of wastewater from monastery has reached to the culvert in the SEZ area and discharging to the retention pond.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, industrial compound in the east and paddy field in the south and west respectively.

SW-3 (Reference Point)

SW-3 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 60 m downstream of SW-2. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, industrial compound in the east and paddy field in the south and west respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 500 m downstream of SW-3. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, industrial compound in the east and paddy field in the south and west respectively.

SW-5

SW-5 was collected at retention canal near main gate of Thilawa SEZ. Most of the water collected in this drain is rain water and wastewater from surrounding. This drain is also connected to the Shwe Pyauk creek. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation.

SW-6

SW-6 was collected at drain outlet of centralized Sewage Treatment Plant (STP) which is located in the north of Moegyoe swan monastery compound and retention pond (SW-1). Then the treated water is flowing to the retention pond.

GW-1 (Reference of Existing Tube Well)

GW-1 was collected from tube well as ground water sample. It is located in the compound of Moegyoe swan monastery. The surrounding area are Zone A in the west, retention pond in the east and Dagon-Thilawa road in the south respectively.

2.3 Monitoring Method

All water samples were collected with cleaned 1L sampling bottle and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4° C and were transported to the laboratory. Among the parameters; water temperature, pH and DO, were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "Tamaya Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pН	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended solid (SS)	APHA 2540 D (Dry at 103-105'C Method)
4	Dissolved oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD (5)	APHA 5210 B (5 days BOD Test)
6	COD (Cr)	APHA 5220 D (Closed Reflux Colorimetric Method)
7	Total coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)
9	Total phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120 C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by UC-200V Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 22nd September 2016 and sampling time is shown in Table 2.4-1 to avoid tidal effect.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-1	22/09/2016 12:43
2	SW-2	22/09/2016 11:13
3	SW-3	22/09/2016 10:52
4	SW-4	22/09/2016 10:01
5	SW-5	22/09/2016 12:16
6	SW-6	22/09/2016 16:33
7	GW-1	22/09/2016 12:00

Source: Myanmar Koei International Ltd.

2.5 Monitoring Results

the laboratory are described in Appendix-2. The results were compared with the target value of effluent water Quality discharging to water body stipulated in the EIA report.

2.5.1 Results of Water Quality at the Outlet of Sewage Treatment Plant of Industrial Area of Thilawa SEZ and at the Point before discharging to Creek

As the comparison with the target value, the results of suspended solid (SS), Total coliform were exceeded the target values. As for the result of SS, the result at the outlet of the centralized sewage treatment plant (SW-6) complied with the target value. It implied that effluents from each locator was treated well by the sewage treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) before discharging to creek, exceeded the target value due to the expected reasons; i) surface water run-off from bare land in Zone A and ii) influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

As for the result of Total coliform of surface water, the result at the outlet of the centralized sewage treatment plant (SW-6) also complied with the target value. It may prove that effluent from each locator was treated well by the sewage treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) exceeded the target value due to the expected reasons; i) the biggest expected reason might natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

In the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

On the bases of the above examinations, the following actions shall be taken to control SS and total coliform;

- 1) To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- 2) To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria¹

Perhaps, the possibility that water flowing through the retention canals might include overflowed water from some construction sites with insufficient treatment of coliform should not be excluded from the possible cause.

¹ Since the composition of Total coliform include bacteria from natural origin, and even after Total coliform do not affect human health directly, it is recommended that measurement of Escherichia coli (E. Coli) will be added to the water quality monitoring parameters in order to identify health impact by coliform bacteria.

Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged from Centralized STP

No.	Parameters	Unit	SW-1	SW-5	SW-6	Target Value
1	Temperature	°C	31.45	33.04	29.39	
2	pН	/2	6.92	8.47	7.09	5~9
3	Suspended solid (SS)	mg/L	88.0	46.00	8.00	30
4	Dissolved oxygen (DO)	mg/L	5.46	6.06	5.30	:=
5	BOD (5)	mg/L	5.19	5.89	5.43	20
6	COD (Cr)	mg/L	< 0.7	3.8	< 0.7	70
7	Total coliform	MPN/100ml	90,000	50,000	<2	400
8	Total nitrogen (T-N)	mg/L	1.8	0.9	14.3	80
9	Total phosphorous (T-P)	mg/L	0.232	0.134	0.098	5
10	Color	TCU (True Color Unit)	5.91	4.22	0.96	5
11	Odor	TON (Threshold Odor Number)	1	2	4	8
12	Oil and grease*1	mg/L	3.17	2	< 3.1	5
13	Chromium*1	mg/L	0.066	-	0.04	0.5
14	Flow Rate	m³/s	0.52	0.045	0.025	-

Note *1: In the MJTD's self-monitoring results on 7th September 2016 were not exceeded the target levels of Oil and grease and Chromium. Therefore, the monitoring of Oil and grease and Chromium were not carried out on 22nd September 2016.

Source: Myanmar Koei International Ltd.

2.5.2 Results of Reference Monitoring for Comparison with Discharging Points and Baseline of Discharged Creek

Results of water quality survey are summarized in Table 2.5-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report. As the comparison with the target value, the results of SS, Total coliform, and Total nitrogen were exceeded the target value. As for the result of SS, results at the surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ, and ii) delivered from downstream area by tidal effect.

As for the result of Total coliform of surface water, results at the other surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area, and ii) delivered from downstream area by tidal effect.

As for the result of total coliform in ground water, result at GW-1 (groundwater in Moegyoe swan monastery) exceeded the target value. The expected reason for exceeding the target value is infiltration of wastewater from toilet wastewater and /or animal waste.

As for the result of total nitrogen (T-N), the result at GW-1 (groundwater in Moegyoe swan monastery) exceeded the target value. The expected reason for exceeding the target value is infiltration of wastewater from toilet wastewater and /or animal waste. It has a possibility to high level of nitrite-nitrogen (N-NO₂) to be affected babies causing hemoglobinemia. If a baby who lives in the monastery and drink water from the groundwater, it is recommended to check whether nitrite-nitrogen (N-NO₂) exceeds the guideline value stipulated in World Health Organization (WHO) and to advice the monastery not good for baby to drink water from groundwater.

However, the above observations cannot reach to the conclusion of what is the reason to be exceeded the target values, the continuous monitoring will be necessary.

Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison with Discharging Points and Baseline of Discharged Creek

No.	Parameters	Unit	SW-2	SW-3	SW-4	GW-1	Target Value
1	Temperature	°C	30.55	30.00	29.29	33.63	
2	рН	(*)	6.46	6.71	6.82	7.84	5~9
3	Suspended solid (SS)	mg/L	34.0	42.00	176.0	24	30
4	Dissolved oxygen (DO)	mg/L	4.61	3.85	3.72	5.19	24
5	BOD (5)	mg/L	4.30	7.60	5.04	2.74	20
6	COD (Cr)	mg/L	7.1	6.6	3.3	<0.7	70
7	Total coliform	MPN/100ml	160,000	24,000	90,000	1,400	400
8	Total nitrogen (T-N)	mg/L	1.7	2.0	3.4	110	80
9	Total phosphorous (T-P)	mg/L	0.293	0.158	0.298	0.237	
10	Color	TCU (True Color Unit)	12.64	14.51	17.72	1.19	98
11	Odor	TON (Threshold Odor Number)	1	2	1	1	(40)
12	Flow Rate	m³/s		+		*	0.00

Source: Myanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As for the result of SS and total coliform, the results at the outlet of the centralized sewage treatment plant (SW-6) complied with the target value of both of them. It may prove that effluent from each locator was treated well by the sewage treatment plant. On the other hand, parameters of SS and Total coliform levels *at* retention pond (SW-1) and retention canal (SW-5) were exceeded the target values in this period for main discharging gates of Thilawa SEZ Zone A. However, as mentioned in Section 2.5.1, in the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

As for parameters of SS, Total coliform, and Total nitrogen in surface water and ground water were exceeded the target values at reference monitoring point as baseline of discharged creek and tube well in monastery. As mentioned in Section 2.5.2, expected reasons for exceeding the target values are by various activities such as livestock, industry, and domestic outside of the industrial area of Zone A. However, it cannot reach to the conclusion of what is the reason to be exceeded the target values, thus the continuous monitoring and seasonal data and yearly trend analysis will be necessary.

As for future subject for main discharging points of Thilawa SEZ Zone A, the following action may be taken to achieve the target levels and appropriate water quality monitoring:

- To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria; and
- To examine the possibility of the overflow water from construction sites.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGING POINTS OF THILAWA SEZ ZONE A

Surface water sampling and onsite measurement at SW-1

Surface water sampling and onsite measurement at SW-5

Surface water sampling and onsite measurement at SW-6

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-3

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-1

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGING POINTS AND AFTER SEWAGE TREATMENT PLANT

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/ 09 796935149

Report No.: GEM-LAB-201610022

Revision No.: 1

Report Date: 5 October, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

: MKI-SW-1-2216

Sampling Date: 22 September, 2016

Sample Name Sample No.

: W-1609070

Sampling By: Customer

Waste Profile No.

Sample Received Date: 22 September, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	88.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.19	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	< 0.7	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persuifate Digestion Method)	mg/l	1.8	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.232	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	5.91	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	=
8	Total Coliform	APHA 9221B (Standard Total Coliform Farmentation Technique)	MPN/100ml	90000	2

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 21st edition

nalysed By:

Ni Aye Lwin sistant supervisor

Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No.: GEM-LAB-201610025

Revision No.: 1

Report Date: 5 October, 2016

Application No.: 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

No.

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-SW-5-2216

Sampling Date: 22 September, 2016

Unit Result LOQ

Sample Name Sample No.

W-1609073

Sampling By: Customer

Sample Received Date: 22 September, 2016

Waste Profile No.

Parameter

1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	46.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.89	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	3.8	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	0.9	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.134	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	4.22	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	
8	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	50000	2

Method

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 21st edition

Analysed By:

Ni Ni Aye Lwin Assistant supervisor

Approved By :

AWADE

Tomoya Suzuk

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tcl:01-2309051/09 796935149

Report No.: GEM-LAB-201610026

Revision No.: 1

Report Date: 5 October, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-SW-6-2216

Sampling Date: 22 September, 2016

Sample Name Sample No.

: W-1609074

Sampling By: Customer

Waste Profile No.

Sample Received Date: 22 September, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	8.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.43	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	< 0.7	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	14.3	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.098	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	0.96	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	4	_
8	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	< 2	2

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 21st edition

Analysed By :

Ni Aye Lwin

istant supervisor

Tomoya Suzuki

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/ 09 796935149

Report No.: GEM-LAB-201610023

Revision No.: 1

Report Date: 5 October, 2016 Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koel International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-SW-2(a)-2216

Sampling Date : 22 September, 2016

Sample Name Sample No.

W-1609071

Sampling By: Customer

Waste Profile No.

Sample Received Date: 22 September, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	34.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.30	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	7.1	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.7	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.293	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	12.64	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	_
8	Total Coliform	APHA 9221B (Standard Total Collform Fermentation Technique)	MPN/100ml	≥ 160000	2

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analysed By :

Ni Ni Aye Lwin Assistant supervisor

Approved By

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No.: GEM-LAB-201610029

Revision No.: 1

Report Date: 5 October, 2016 Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-\$W-3-2216

Sampling Date: 22 September, 2016

Sample Name

Sample No. : W-1609077

Sampling By: Customer

Waste Profile No. Sample Received Date: 22 September, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	42.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	7.60	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	6.6	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	2.0	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.158	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.51	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	-
8	Total Collform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	24000	2
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analysed By :

Ni Aye Lwin ant supervisor Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No. : GEM-LAB-201610027

Revision No. : 1

Report Date: 5 October, 2016 Application No. 3 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-SW-4(a)-2216

Sampling Date 🐉 22 September, 2016

Sample No.

Sample Name

W-1609075

Sampling By 📳 Customer

Waste Profile No.

Sample Received Date : 22 September, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/i	176.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.04	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	3.3	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.4	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.298	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	17.72	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	-
8	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	90000	2
	-				

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analysed By:

Ni Ni Aye Lwin

Assistant supervisor

Approved By

Tomoya Suzuki Director

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1, ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No.: GEM-LAB-201610021

Revision No.: 1

Report Date: 5 October, 2016 Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

MKI-GW-1-2216

Sampling Date: 22 September, 2016

Sample Name Sample No.

Waste Profile No.

W-1609069

Sampling By : Customer

Sample Received Date: 22 September, 2016

Parameter	Method	Unit	Result	LOQ
SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	24.00	0
BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	2.74	0
COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	< 0.7	0.7
Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	110	0
Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.237	0.05
Color	APHA 2120C (Spectrophotometric Method)	TCU	1.19	0
Odor	APHA 2150 B (Threshold Odor Test)	TON	1	-
Total Coliform	APHA 92218 (Standard Total Collform Fermentation Technique)	MPN/100ml	1400	2
	SS BOD (5) COD (Cr) Total Nitrogen Total Phosphorous Color	SS APHA 2540D (Dry at 103-105'C Method) BOD (5) APHA 5210 B (5 Days BOD Test) COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Color APHA 2120C (Spectrophotometric Method) Odor APHA 2150 B (Threshold Odor Test)	SS APHA 2540D (Dry at 103-105'C Method) mg/l BOD (5) APHA 5210 B (5 Days BOD Test) mg/l COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) mg/l Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) mg/l Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) mg/l Color APHA 2120C (Spectrophotometric Method) TCU Odor APHA 2150 B (Threshold Odor Test) TON	SS APHA 2540D (Dry at 103-105'C Method) mg/l 24.00 BOD (5) APHA 5210 B (5 Days BOD Test) mg/l 2.74 COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) mg/l < 0.7

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 21st edition

Analysed By:

Aye Lwin supervisor

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Water and Waste Water Monitoring Report
October, 2016

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE A (PHASE 1 OPERATION STAGE)

(Bi-Annually Monitoring)

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 General
CHAPTER 2: WATER QUALITY MONITORING
2.1 Monitoring Items
2.2 Description of Sampling Points
2.3 Monitoring Method
2.4 Monitoring Period5
2.5 Monitoring Results
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS11
APPENDIX-1 FIELD SURVEY PHOTOS
APPENDIX-2 LABORATORY RESULTS
The state of the s
<u>LIST OF TABLES</u>
Table 2.1-1 Monitoring Items for Water Quality
Table 2.2-1 Outline of Sampling Points
Table 2.3-1 Analytic Method for Water Quality
Table 2.4-1 Sampling Time of Each Station
Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged
from Centralized STP8
Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison
with Discharging Points and Baseline of Discharged Creek
L MOTE OF THE WINDS
<u>LIST OF FIGURES</u>
Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring
Figure 2.4-1 Tide Record for Yangon River, Myanmar6
ANA DEVE
The state of the s
MJTD
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
William odly

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone A in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total seven sampling points are set for water quality survey, named SW-1, SW-2, SW-3, SW-4, SW-5, SW-6, and GW-1 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the seven locations, SW-1, SW-5 are main discharging points of Thilawa SEZ and SW-6 is discharging from centralized Sewage Treatment Plant (STP) which is required to monitor by Environmental Monitoring Plan (EMoP) in EIA report of Thilawa SEZ Zone A. The remaining points SW-2, SW-3 and SW-4 are sampled as a reference monitoring for comparison with discharging points and baseline of discharged creek. Moreover, GW-1 is monitored as a reference of existing tube well which located in the monastery compound. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Figure 1.1- 1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined so as to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at seven locations. Among the seven locations, water flow measurement was carried out at three locations (SW-1, SW-5, and SW-6) where can be measured by flow rate instrument. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	GW-1	Remarks
1	pН	0	0	0	0	0	0	0	On-site measurement
2	Water Temperature	0	0	0	0	0	0	0	On-site measurement
_ 3	DO	0	0	0	0	0	0	0	On-site measurement
4	BOD	0	0	0	0	0	0	0	Laboratory analysis
5	COD	0	0	0	0	0	0	0	Laboratory analysis
6	Total nitrogen	0	0	0	0	0	0	0	Laboratory analysis
7	Suspended solids	0	0	0	0	0	0	0	Laboratory analysis
8	Total coliform	0	0	0	0	0	0	0	Laboratory analysis
9	Total phosphorous	0	0	0	0	0	0	0	Laboratory analysis
10	Sulphide	0	0	0	0	0	0	0	Laboratory analysis
11	Free chlorine	0	0	0	0	0	0	0	Laboratory analysis
12	Color	0	0	0	0	0	0	0	Laboratory analysis
13	Cyanide	0	0	0	0	0	0	0	Laboratory analysis
14	Oil and grease	0	0	0	0	0	0	0	Laboratory analysis
15	Formaldehyde	0	0	0	0	0	0	0	Laboratory analysis
16	Phenol	0	0	0	0	0	0	0	Laboratory analysis
17	Mercury	0	0	0	0	0	0	0	Laboratory analysis
18	Zinc	0	0	0	0	0	0	0	Laboratory analysis
19	Arsenic	0	0	0	0	0	0	0	Laboratory analysis
20	Chromium	0	0	0	0	0	0	0	Laboratory analysis
21	Cadmium	0	0	0	0	0	0	0	Laboratory analysis
22	Selenium	0	0	0	0	0	0	0	Laboratory analysis
23	Lead	0	0	0	0	0	0	0	Laboratory analysis
24	Copper	0	0	0	0	0	0	0	Laboratory analysis
25	Barium	0	0	0	0	0	0	0	Laboratory analysis
26	Nickel	0	0	0	0	0	0	0	Laboratory analysis
27	Odor	0	0	0	0	0	0	0	Laboratory analysis
28	Flow Rate	0	.=	:=:	-	0	0	=	On-site measurement

Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
1	SW-1	Coordinate- N-16° 40' 13.5", E- 96° 16' 39.8"
		Location - Outlet of Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
	SW-2	Coordinate- N-16° 40' 06.0", E- 96° 16' 43.1"
2		Location - Upstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
3	SW-3	Coordinate- N-16° 40' 05.5", E- 96° 16' 41.6"
		Location - Upstream of Shwe Pyauk Creek, after combining with the disposal discharge from MJTD.
		Survey Item – Surface water sampling.
	SW-4	Coordinate- N-16° 39' 54.6", E- 96° 16' 26.4"
4		Location - Downstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
5	SW-5	Coordinate- N-16° 40' 10.7", E- 96° 16' 22.6"
		Location - Outlet of Retention Canal
		Survey Item - Surface water sampling and water flow rate measurement.
6	SW-6	Coordinate- N-16° 40' 26.8", E- 96° 16' 30.7"
		Location - Outlet from STP to Retention Pond
		Survey Item - Surface water sampling and water flow rate measurement.
	GW-1	Coordinate- N-16° 40' 25.1", E- 96° 16' 31.7"
7		Location - In Moegyoe Swan Monastery
		Survey Item – Ground Water Sampling

Source: Myanmar Koei International Ltd.

SW-1

SW-1 was collected at the discharge point of retention pond which is located in the east of Moegyoe swan monastery. This drainage is flowing from north to south and then connected to the Shwe Pyauk creek through earth drain. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation. In addition, it seems that a part of wastewater from monastery has reached to the culvert in the SEZ area and discharging to the retention pond.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-3 (Reference Point)

SW-3 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 60 m downstream of SW-2. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek which is flowing from east to west and I then entering into the Yangon river. It is distance about 500 m downstream of SW-3. This sampling

point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-5

SW-5 was collected at retention canal near main gate of Thilawa SEZ. Most of the water collected in this drain is rain water and waste water from surrounding. This drain is also connected to the Shwe Pyauk creek. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation.

SW-6

SW-6 was collected at drain outlet of centralized Sewage Treatment Plant (STP) which is located in the north of Moegyoe swan monastery compound and retention pond (SW-1). Then the treated water is flowing to the retention pond.

GW-1 (Reference of Existing Tube Well)

GW-1 was collected from tube well as ground water sample. It is located in the compound of Moegyoe swan monastery. The surrounding area are Zone A in the west, retention pond in the east and Dagon-Thilawa road in the south respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottle and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4° C and were transported to the laboratory. Among the parameters; water temperature, pH and DO, were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "Tamaya Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method	
1	Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)	
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)	
3	Suspended solids (SS)	APHA 2540D (Dry at 103-105'C Method)	
4	Dissolved oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)	
5	BOD (5)	APHA 5210 B (5 days BOD Test)	
6	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	
7	Total coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	
8	Total nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)	
9	Total phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)	
10	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	
11	Free chlorine	APHA 4500 CL G (DPD Colorimetric Method)	
12	Color	APHA 2120C (Spectrophotometric Method)	
13 Cyanide		HACH 8027 (Pyridine – Pyrazalone Method)	
14 Oil and grease		APHA 5520B (Partition-Gravimetric Method)	
15	Formaldehyde	HACH 8110 (MBTH Method)	
76	Phenol	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	
Mercury		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	

No.	Parameter	Method	
18	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
19	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
20	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
21	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
22	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
23	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
24	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
25	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
26	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
27	Odor	APHA 2150 B (Threshold Odor Test)	
28	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by UC-200V Digital Current Meters)	

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate survey were conducted on 18th October 2016 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon river, Myanmar on 18th October 2016 is shown in Figure 2.4-1.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-1	18/10/2016 13:28
2	SW-2	18/10/2016 10:54
3	SW-3	18/10/2016 11:26
4	SW-4	18/10/2016 12:00
5	SW-5	18/10/2016 12:31
6	SW-6	18/10/2016 12:53
7	GW-1	18/10/2016 13:59

Source: Myanmar Koei International Ltd.

Figure 2.4-1 Tide Record for Yangon River, Myanmar

2.5 Monitoring Results

Results of water quality survey are summarized in Table 2.5-1 and Table 2.5-2. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report and Industrial Zone, Internal Regulations of Thilawa SEZ Zone A.

2.5.1 Results of Water Quality at the Outlet of Sewage Treatment Plant of Industrial Area of Thilawa SEZ and at the Point before discharging to Creek

(1) Results of Bi Annually Monitoring

As the comparison with the target value, the results of suspended solid (SS), COD (Cr), total coliform, oil and grease, cyanide, free chlorine, sulphide were exceeded than the target value.

As for the result of SS, the result at the outlet of the centralized wastewater treatment plant (SW-6) complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) before discharging to creek, exceeded the target value due to the expected reasons; i) surface water run-off from bare land in Zone A and ii) influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

As for the result of COD (Cr) of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) and at the outlet of retention canal (SW-5) also complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, result at the other surface water monitoring point (SW-1) exceeded the target value due to the expected reason; analytical error as positive interference by high concentration of oil and grease. In case of oil and grease are containing sample, the analysis method commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

As for the result of total coliform of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) also complied with the target value. It implied that effluents from each locator breated well by the wastewater treatment plant. On the other hand, results at the monitoring points of recention pond (SW-1) and retention canal (SW-5) exceeded the target value due to the expected to the biggest expected reason might natural bacteria existed in all area of Zone A because there

are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

As for the result of oil and grease of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) also complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) exceeded the target value due to the expected reasons; i) accidental spillage of oil and grease to retention pond (SW-1) and ii) influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation.

As for the result of cyanide of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) and at the outlet of retention canal (SW-5) also complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, results at the other surface water monitoring point (SW-1) exceeded the target value due to the expected reasons; analytical error due to positive interference by high concentration of oil and grease. Since any factories in Thilawa SEZ Zone A have not utilized and produced cyanide in their processes, it is better to consider the reason of exceeded the target value might be an analytical error. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

As for the result of free chlorine of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) also complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, results at the other surface water monitoring points (SW-1 and SW-5) exceeded the target value due to the expected reason; the result of the free chlorine has a possibility of positive interference from foreign substances in sample. If the water sample containing high turbidity, color and oil and grease, the analysis of free chlorine might be affected as positive interference. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

As for the result of sulphide of surface water, the result at the outlet of the centralized wastewater treatment plant (SW-6) and at the outlet of retention canal (SW-5) also complied with the target value. It implied that effluents from each locator were treated well by the wastewater treatment plant. On the other hand, results at the other surface water monitoring point (SW-1) exceeded the target value due to the expected reason; analytical error as positive interference by high concentration of oil and grease. The analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

(2) Additional Information by MJTD

MJTD has carried out regular water quality monitoring in accordance with EIA report. In addition to EIA report, MJTD has conducted water quality monitoring by weekly and monthly basis. During Biannually monitoring was carried out on (18-Oct-2016), water sample has contained high concentration of oil and grease at SW-1. Therefore, results (18-Oct-2016) is compared with results (2-Nov-2016). It can be clearly seen that the result of COD (Cr), cyanide, free chlorine, sulphide are lower than results on (2-Nov-2016). In conclusion, all exceeded parameters as COD (Cr), cyanide, free chlorine, sulphide at SW-1 are due to the possibility of positive interference by high concentration of oil and grease in sample. One of the possibility to avoid positive interference is to analyze with the upgraded method. As for the result of oil and grease on 18-Oct-2016, this exceeding issue is incidental case because the total oil and grease monitoring results in the previous monitoring month and additional monitoring result on 2-Nov-2016 complied with the target value. Thus, the impact on oil and grease to the surrounding area is not expected.

As described above, the result of SS at retention pond (SW-1) exceeded the target value due to the expected reasons; i) surface water run-off from bare land in Zone A and ii) influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation. In addition, the result of total coliform at the monitoring points of retention pond (SW-1) and retention canal (SW-5) exceeded

the target value due to the expected reasons. i) the biggest expected reason might natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

In the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

On the bases of the above examinations, the following actions shall be taken to control SS and total coliform;

- 1) To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- 2) To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria¹

Perhaps, the possibility that water flowing through the retention canals might include overflowed water from some construction sites with insufficient treatment of coliform should not be excluded from the possible cause.

Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged from Centralized STP

	Sampling	Date	18-Oct-16	2-Nov-16	18-Oct-16	18-Oct-16	August 715
No.	Parameters	Unit	Regular Monitoring ¹	Additional Monitoring *1		ular toring	Target Value
Tá i			SW-1	SW-1	SW-5	SW-6	
1.	Temperature	°C	35	2	33	30	Max. 40
2.	pН		7		7.5	7.5	5.0~9.0
3.	Suspended solid (SS)	mg/L	982	402	120	2	Max. 30
4.	Dissolved oxygen (DO)	mg/L	4.76	140	6.71	3.32	127
5.	BOD (5)	mg/L	9.35	0.6	4.48	3.32	Max. 20
6.	COD (Cr)	mg/L	2380.0	< 0.7	4.6	10.2	Max. 70
7.	Total coliform	MPN/ 100ml	90,000	160,000	160,000	< 2	Max. 400
8.	Total nitrogen (T-N)	mg/L	3.1	5.3	1.2	7.4	80
9.	Total phosphorous (T-P)	mg/L	0.606	0.522	0.27	0.09	120
10.	Sulphide	mg/L	1.188	0.763	0.508	< 0.005	Max. 1
11_{\odot}	Free chlorine	mg/L	8.0	4.1	2.8	0.1	Max. 1
12,	Color	TCU (True Color Unit)	8.75	7.53	5.62	7.00	*
13.	Cyanide	mg/L	7.00	0.196	0.147	0.001	Max. 0.2
14.	Oil and grease		320.25	4.73	< 3.1	< 3.1	Max. 5
15.	Formaldehyde	mg/L	0.490	0.377	0.202	0.004	Max. 1
16.	Phenols	mg/L	0.032	≤0.002	0.028	0.004	Max. 1
17.	Mercury	mg/L	≤0.00054	≤0.00054	≤0.00054	≤0.00054	Max. 0.005
18.	Zinc	mg/L	0.054	0.056	0.042	0.006	Max. 5
19.	Arsenic	mg/L	0.022	0.012	0.012	≤0.01	Max. 0.25
20.	Chromium	mg/L	≤0.002	0.046	≤0.002	≤0.002	Max. 0.5
21.	Cadmium	mg/L	≤0.001	≤0.001	≤0.001	≤0.001	Max. 0.03
22.	Selenium	mg/L	≤0.01	≤0.01	≤0.01	≤0.01	Max. 0.02
23.	Lead	mg/L	≤0.002	≤0.002	≤0.002	≤0.002	Max. 0.2
24.	Соррег	mg/L	0.004	≤0.002	≤0.002	≤0.002	Max. 1

Since the composition of Total coliform include bacteria from natural origin, and even after Total coliform do not affect fundamental directly, it is recommended that measurement of Escherichia coli (E. Coli) will be added to the water quality montroring parameters in order to identify health impact by coliform bacteria.

	Sampling	Date	18-Oct-16	2-Nov-16	18-Oct-16	18-Oct-16	HELPHING.	
No.	Parameters	Unit	Regular Monitoring*1	Additional Monitoring *1	Regular Monitoring		Target Value	
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		SW-1	SW-1	SW-5	SW-6		
25.	Barium	mg/L	0.048	0.068	0.036	0.014	Max. 1	
26.	Nickel	mg/L	0.052	0.03	0.028	0.012	Max. 0.2	
27.	Odor	TON (Threshold Odor Number)	200	8	1	1	•	
28.	Flow Rate	m³/s	0.44		0.093	0.012		

Note *1: Regular water quality monitoring was carried out in accordance with EIA report. In addition to EIA report, additional self-water quality monitoring was also carried out by weekly and monthly basis. As of the water quality monitoring results on 18 Oct 2016, water sample has contained high level of oil and grease at SW-1. Therefore, results (18-Oct-2016) is compared with results (2-Nov-2016). It can be clearly seen that the result of COD (Cr), oil and grease, cyanide, free chlorine, sulphide are lower in (2-Nov-2016) results.

Source: Myanmar Koei International Ltd.

2.5.2 Results of Reference Monitoring for Comparison with Discharging Points and Baseline of Discharged Creek

As the comparison with the target value, the results of SS, total coliform, oil and grease, free chlorine were exceeded than the target value.

As for the result of SS, results at the surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from the other industrial area outside of Thilawa SEZ, and ii) delivered from downstream area by tidal effect.

As for the result of total coliform of surface water, results at the other surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area, and ii) delivered from downstream area by tidal effect.

As for the result of oil and grease of surface water, results at the other surface water monitoring points (SW-2, SW-3) exceeded the target value due to expected reason; accidental spillage of oil and grease to retention pond (SW-1) and these spillages may be flowing up to SW-2 and flowing out to SW-3 during high tide, upstream of Shwe Pyauk creek. After this issue was found, retention pond discharge gate was closing from 18th October 2016 to 26th October 2016. In during those days, heavy rain and the collected rain water diluted with oil contaminated water. Then, oil and grease level has been lower than the National Environmental Quality (Emission) Guideline (NEQG) value. For the confirmation of current status for oil and grease at retention pond, additional water quality monitoring was conducted. After confirmed that oil and grease level were below the target value, retention pond discharge gate was opened. Therefore, oil contaminated water which is exceeded the target value were not discharged to the natural creek.

As for the result of free chlorine, results at the other surface water monitoring points (SW-3, SW-4) exceeded the target value due to expected reason; the result of the free chlorine has a possibility of positive interference from foreign substances in sample. If the water sample contained high level of turbidity, color and oil and grease, the analysis of free chlorine might be affected as positive interference. These analysis methods commonly used in Myanmar where there is limitation of laboratory instruments are unable to get correct results.

Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison with Discharging Points and Baseline of Discharged Creek

100	Sampling Dat	e	18-Oct-16	18-Oct-16	18-Oct-16	18-Oct-16	Target
No.	Parameters	Unit	SW-2	SW-3	SW-4	GW-1	Value
1.	Temperature	°C	29	30	30	34	Max. 40
2.	pH	-	6	6	6	8	5.0~9.0
3.	Suspended solid (SS)	mg/L	36	88	82	12	Max. 30
4.	Dissolved oxygen (DO)	mg/L	4.62	3.71	4.2	5.56	14
5	BOD(5)	mg/L	3.86	3.67	3.87	3.34	Max. 20
6,	COD (Cr)	mg/L	14.5	10.5	11.0	5.0	Max. 70
7.::	Total coliform	MPN/ 100ml	30,000	28,000	160,000	< 2	Max. 400
8.	Total nitrogen (T-N)	mg/L	0.8	7.2	7.2	0.7	80
9.	Total phosphorous (T-P)	mg/L	0.113	0.19	0.171	0.089	*
10.	Sulphide	mg/L	0.102	0.264	0.243	< 0.005	Max. 1
11.	Free chlorine	mg/L	0.7	1,4	1.3	0.1	Max. 1
12.	Color	TCU (True Color Unit)	14.09	8.76	8.25	4.46	-
13.	Cyanide	mg/L	0.031	0.076	0.069	0.002	Max. 0.2
14.	Oil and grease	mg/L	16.56	11.38	< 3.1	< 3.1	Max. 5
15.	Formaldehyde	mg/L	0.060	0.128	0.137	< 0.003	Max. 1
16.	Phenols	mg/L	0.022	0.001	0.007	0.015	Max, 1
17.	Mercury	mg/L	≤0.00054	≤0.00054	≤0.00054	≤0.00054	Max. 0.005
18.	Zinc	mg/L	0.012	0.014	0.022	0.01	Max. 5
19.	Arsenic	mg/L	≤0.01	≤0.01	≤0.01	≤0.01	Max. 0.25
20.	Chromium	mg/L	≤0.002	≤0.002	≤0.002	≤0.002	Max. 0.5
21.	Cadmium	mg/L	≤0.001	≤0.001	≤0.001	≤0.001	Max. 0.03
22.	Selenium	mg/L	≤0.01	≤0.01	≤0.01	≤0.01	Max. 0.02
23.	Lead	mg/L	≤0.002	≤0.002	≤0.002	≤0.002	Max. 0.2
24.	Copper	mg/L	≤0.002	≤0.002	≤0.002	≤0.002	Max. 1
25.	Barium	mg/L	0.012	0.08	0.018	0.092	Max. 1
26.	Nickel	mg/L	0.002	0.01	0.01	≤0.002	Max. 0.2
27.	Odor	TON (Threshold Odor	2	2	1	1	
AD. 28.	Flow Rate	Number) m³/s				2	
28.	I Flow Kate	m ² /S		(3)	3/		

vanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As for the result of oil and grease, the results at the outlet of the centralized sewage treatment plant (SW-6) complied with the both target values. It may prove that effluent from each locator was treated well by the sewage treatment plant. The result of oil and grease at SW-1 exceeding the target values but the value this event was incidental case and its impact is not expected because the results in the previous monitoring months and result of additional monitoring at retention pond (SW-1) complied with the target value. Besides, it can be concluded that the result which were exceeded the target value as COD (Cr), cyanide, free chlorine, sulphide at SW-1 are due to the possibility of positive interference by high concentration of oil and grease in sample.

On the other hand, parameters of SS and total coliform levels at retention pond (SW-1) and retention canal (SW-5) were exceeded the target values in this period for main discharging gates of Thilawa SEZ Zone A. However, as mentioned in Section 2.5.1, in the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

As for parameters of SS and total coliform in surface water were exceeded the target values at reference monitoring points. As mentioned in Section 2.5.2, expected reasons for exceeding the target values are by various activities such as livestock, industry, and domestic outside of the industrial area of Zone A. However, it cannot reach to the conclusion of what is the reason to be exceeded the target values, thus the continuous monitoring and seasonal data and yearly trend analysis will be necessary.

As for future subject for main discharging points of Thilawa SEZ Zone A, the following action may be taken to achieve the target levels and appropriate water quality monitoring:

- To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacterial; and

- To examine the possibility of the overflow water from construction sites.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGING POINTS OF THILAWA SEZ ZONE A

Surface water sampling and onsite measurement at SW-1

Surface water sampling and onsite measurement at SW-5

Surface water sampling and onsite measurement at SW-6

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling at SW-3

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-1

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGING POINTS AND AFTER SEWAGE TREATMENT PLANT

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO. LTD. Lot No. E1. ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel 01-2309051 09 796935149

Report No.: GEM-LAB-201611016

Revision No.: 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-1-1018

Sampling Date: 18 October, 2016

Sample No.

W-1610077

Sampling By: Customer

Waste Profile No.

Sample Received Date: 18 October, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	982.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	9:35	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	2380.0	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.1	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.606	0.05
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	320.25	3.1
7	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	90000	2
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	8.75	0
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	200	0
10	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method	mg/i	7.000	0.002
11	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	8.0	0.1
12	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	L.188	0 005
13	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.490	0 003
14	Phenol	1,5274 Membe 420 : Phenaika (Specmaphozometric Manual 4AAF avits Distributor)	mg/l	0 032	0 002

Remark LOQ - Limit of Quarititation

> APHA | American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater. 21st edition

No.	Parameter	Method	Unit	Result	rođ
15	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	s 0.00054	0.00054
16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Hethod)	mg/l	0.054	0.002
17	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.022	0.01
18	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
19	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.001	0.001
20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.01	0.01
21	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
22	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.004	0.002
23	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.048	0.001
24	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	0.052	0.002

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

AWA ON AYE LWIN

nt supervisor

LAB

Director

Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD

Lot No. E1 . ThilawaSE2 Zone A, Yangon Region, the Union of Myanmar Tel 01-2309051/09 796935149

Report No. : GEM-LAB-201611020

Revision No.: 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-5-1018

Sampling Date : 18 October, 2016

Sample No. Waste Profile No. W-1610081

Customer Sampling By :

Sample Received Date: 18 October, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	120.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.4B	0
3	COD (Cr)	APHA 5220D (Close Reflux Colonmetric Method)	mg/l	4.6	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.2	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.27	0.05
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
7	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	160000	2
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	5.62	0
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method	mg/l	0.147	0.002
11	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	2.8	0.1
12	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.508	0.005
13	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.202	0.003
14	Phenol	(SEHA METEU) 420 ; Prencius (Speci constituentic Manual AAAP With Distriction)	mg/l	0.028	0.002

Remark : LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, as the edition of Water and Water a

No.	Parameter	Method	Unit	Result	rod
15	Mercury	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.00054	0.00054
16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.042	0.002
17	Arsenic	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.012	0.01
18	Chromium	APHA 3120 6 (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
19	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.001	0.001
20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.01	0.01
21	Lead	APHA 3120 8 (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.002	0.002
22	Copper	APHA 3120 6 (Inductively Coupled Plasma (ICP) Method)	rng/l	≤0.002	0.002
23	Banum	APHA 3120 B (Inductively Coupled Plasma (ICP) Netrod)	mg/l	0.036	0.001
24	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	0.028	0.002

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

NI Ni Aye Lwin

ant supervisor

Tomoya Suzuki Director

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. S1. ThilawaSE2 Zone A, Yangon Region, the Union of Myanmar Tol. 01-2309051. UP 796935149

Report No. | GEM-LAB-201611021

Revision No. # 1

Report Date : 7 November, 2016

Application No. © 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample No.

Sample Name MKI-SW-6-1018 Sampling Date | 18 October, 2016

W-1610082

Sampling By : Customer

Waste Profile No.

Sample Received Date 🔋 18 October, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	2.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	3.32	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	10.2	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	7.4	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.09	0.05
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
7	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	< 2	2
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	7.00	0
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method	mg/I	0.001	0.002
11	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.1	0.1
12	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	< 0.005	0.005
13	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.004	0.003
14	Phenol	USEPA Nothed 420.1 Phonoics (Sanctrephotometric Renuel AAAP Will Disc Beton)	mg/l	0.004	0.002

Remark LOQ - Limit of Quantitation

> APHA - American Public Health Association (APHA), the American Water Works Association (AWWA). and the Water Environment F Standard Methods for the Examination of Water and

Wastewater, 21st editio

No.	Parameter	Method	Unit	Result	rod
15	Mercury	APMA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.00054	0.00054
16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.006	0.002
17	Arsenic	APHA 3120 5 (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.01	0.01
18	Chromium	APMA 3120 & (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
19	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.001	0.001
20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤ 0.01	0.01
21	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
22	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
23	Barium	APHA 3120 8 (Inductively Coupled Plasma (ICP) Nethod)	mg/l	0.014	0.001
24	Nickel	APHA 3120 5 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.012	0.002

Remark = LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

Ni Ni Aye Lwin

MADE nt supervisor

Approved By

Tomoya Suzuki

Director

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1. ThilawaSEZ Zone A, Yangon Region, the Union of Miranmat Tel 01-230(0)51 (9) 796935139

Report No.: GEM-LAB-201611017

Revision No. : 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description Sample Name

MKI-SW-2-1018

Sampling Date: 18 October, 2016

Sample No.

W-1610078

Sampling By ! Customer

Waste Profile No.

Sample Received Date 18 October, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/I	36.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	3.86	0
3	COD (Cr)	APHA 5220D (Close Reflux Colonmetric Method)	mg/l	14.5	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	8.0	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/I	0.113	0.05
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	16.56	3 1
7	Total Colform	APHA 92218 (Standard Fotal Coliform Fermentation Technique)	MPN/100ml	30000	2
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.09	0
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	0
10	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method	mg/l	0.031	0.002
11	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/I	0.7	0 1
12	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.102	0.005
13	Formaldehyde	HACH BIIO (MBTH Method)	mg/≀	0 060	0 003
14	Phenol	List 24 Normal 610.1 Phaneirs I spectroproblematic Marius 64,42 Web II extenses	mg/i	0.022	0.002

Remark : LOQ Limit of Quantitation

APMA - American Public Health Association (APMA), the American Water Works Association (AWWA), and the Water Environment According (WEF), Standard Methods for the Examination montion (WEF), Standard Methods for the Examination of

stewater, 21st edition

15 Merc 16 Zinc 17 Arser 18 Chros 19 Cadn		APHA 3120 B (Inductively Coupled Plasma (3CP) Method) APHA 3120 B (Inductively Coupled Plasma (3CP) Method) APHA 3120 B (Inductively Coupled Plasma (3CP) Method) APHA 3120 B (Inductively Coupled Plasma (3CP) Method)	mg/l mg/l mg/l	≤ 0.00054 0.012 ≤ 0.01	0.00054 0.002 0.01
17 Arser		APHA 3120 B (Insuctively Coupled Plasma (ICP) Method)	mg/l		1
18 Chro				≤ 0.01	0.01
	mium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
19 Cadn			mg/l	≤ 0.002	0.002
	nium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.001	0.001
20 Seler	nium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.01	0.01
21 Lead		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
22 Copp	er	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
23 Bariu	ım	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.012	0.001
24 Nicke	el	APHA 3120 B (Inductively Coupled Plesma (ICP) Method)	mg/l	0.002	0.002

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

7/82

Ni Ni Aye Lwin

tint supervisor

LAB

GEM

Approved By

Tomoya Suzuki

Director

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

Lot No. E1 , ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No.: GEM-LAB-201611018

Revision No. : 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-3-1018

Sampling Date: 18 October, 2016

Sample No.

W-1610079

Sampling By: Customer

Waste Profile No.

Sample Received Date: 18 October, 2016

Result LOQ **Parameter** Method Unit No. 88.00 0 APHA 2540D (Dry at 103-105'C Method) SS mg/l 1 3.67 0 APHA 5210 B (5 Days BOD Test) BOD (5) mg/l 2 APHA 5220D (Close Reflux Colorimetric Method) 10.5 0.7 COD (Cr) mg/l 3 0 Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) mg/l 7.2 0.05 0.19 APHA 4500-P E (Ascorbic Acid Method) 5 Total Phosphorous mg/l 11.38 3.1 Oil and Grease APHA 5520B (Partition-Gravimetric Method) mq/l APHA 9221B (Standard Total Coliform Fermentation Technique) MPN/100ml 28000 2 Total Coliform 7 TCU 8.76 0 в Color APHA 2120C (Spectrophotometric Method) 0 TON 2 APHA 2150 B (Threshold Odor Test) 9 Odor 0.002 0.076 HACH 8027 (Pyridine -Pyrazalone Method mg/l Cyanide 10 APHA 4500 CL G (DPD Colorimetric Method) 1.4 0.1 Free Chlorine mg/l 0.005 0.264 12 Sulphide HACH 8131 (USEPA Methylene Blue Method) mg/l 0.003 0.128 13 Formaldehyde HACH 8110 (MBTH Method) mg/l 0.002 0 001 Phenol ISSEA Helinos 420 1 Phenoical Spectrametaments, Manual 4AAF With Chickelon() mg/l 14

> Remark 🐇 LOQ - Limit of Quantitation

> > APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and-Wastewater, 21st edition-

No.	Parameter	Method	Unit	Result	rod
15	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.00054	0.00054
16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.014	0.002
17	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	s 0.01	0.01
18	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤ 0.002	0.002
19	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.001	0.001
20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.01	0.01
21	Lead	APHA 3120 B (Enductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
22	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
23	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.08	0.001
24	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	0.01	0.002

Remark : LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

Ni Ni Aye Lwin

tant supervisor

17 1

Approved By :

Tomoya Suzuki

Director

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1, ThilamaSE22one A, Yangon Region, the Union of Myanmar

Tel 01-2309051 09 796935149

Report No.: GEM-LAB-201611019

Revision No. : 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-4-1018

Sampling Date: 18 October, 2016

Sample No.

W-1610080

Sampling By : Customer

Waste Profile No.

Sample Received Date : 18 October, 2016

Parameter Method Unit Result LOQ No. APHA 2540D (Dry at 103-105'C Method) 82.00 0 55 mg/l 1 APHA 5210 B (5 Days BOD Test) ma/l 3.87 0 BOD (5) 2 COD (Cr) 11.0 0.7 APHA 5220D (Close Reflux Colorimetric Method) ma/l 3 7.2 0 HACH Method 10072 (TNT Persulfate Digestion Method) Total Nitrogen ma/I 0.171 0.05 APHA 4500-P E (Ascorbic Acid Method) ma/l Total Phosphorous < 3.1 3.1 Oil and Grease APHA 55208 (Partition-Gravimetric Method) mg/l MPN/100ml 160000 2 Total Coliform APHA 92218 (Standard Total Coliform Fermentation Technique) Color APHA 2120C (Spectrophotometric Method) TCU 8.25 Ω 8 n 9 Odor APHA 2150 B (Threshold Odor Test) TON 1 HACH 8027 (Pyridine -Pyrazalone Method 0.069 0.002 Cyanide mg/l 10 APHA 4500 CL G (DPD Colorimetric Method) 1.3 0.1 Free Chlonne mg/l 1.1 0.243 0.005 12 Sulphide HACH 8131 (USEPA Methylene Blue Method) mg/l HACH 8110 (MBTH Method) ma/l 0.137 0.003 Formaldehyde 13 0.007 0.002 14 Phenol ISERA Method 820 1 Phenolins Spectrophotometric Manual 8AAF With Distriction ma/l

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF) Standard Methods for the Examination of Water and Wastewater, 21st

GEMI

2 2 2 2 2 2 2 2 2 2	No.	Parameter	Method	Unit	Result	rod
17 Arsenic APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.01 0.01 18 Chromium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 19 Cadmium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.001 0.001 20 Selenium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 21 Lead APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 22 Copper APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l 0.018 0.001	15	Mercury	APHA 3120 8 (Inductively Coupled Plasma (XCP) Method)	mg/l	s 0.00054	0.00054
18 Chromium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 19 Cadmium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.001 0.001 20 Selenium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.01 0.01 21 Lead APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 22 Copper APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l 0.018 0.001	16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.022	0.002
19 Cadmium APHA 3120 8 (Inductively Coupled Plasma (3CP) Method) mg/l ≤ 0.001 0.001 20 Selenium APHA 3120 8 (Inductively Coupled Plasma (3CP) Method) mg/l ≤ 0.001 0.01 21 Lead APHA 3120 8 (Inductively Coupled Plasma (3CP) Method) mg/l ≤ 0.002 0.002 22 Copper APHA 3120 8 (Inductively Coupled Plasma (3CP) Method) mg/l ≤ 0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (3CP) Method) mg/l 0.018 0.001	17	Arsenic	APHA 3120 6 (Inductively Coupled Plasma (XCP) Hethod)	mg/l	≤ 0.01	0.01
20 Selenium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.01 0.01 21 Lead APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 22 Copper APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l 0.018 0.001	18	Chromium	APHA 3120 B (Inductively Coupled Resma (ICP) Hethod)	mg/l	≤ 0.002	0.002
21 Lead APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 22 Copper APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l ≤ 0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (ICP) Method) mg/l 0.018 0.001	19	Cadmium	APNA 3120 8 (Inductively Coupled Plasma (ICP) Hethod)	mg/l	≤ 0.001	0.001
22 Copper APHA 3120 8 (Inductively Coupled Plasma (ICP) Hethod) mg/l ≤0.002 0.002 23 Barium APHA 3120 8 (Inductively Coupled Plasma (ICP) Hethod) mg/l 0.018 0.001	20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.01	0.01
23 Barium APHA 3120 6 (Inductively Coupled Pleama (ICP) Hethod) mg/l 0.018 0.001	21	Lead	APHA 3120 8 (Inductively Coupled Masma (NCP) Method)	mg/l	≤ 0.002	0.002
	22	Copper	APHA 3120 B (Inductively Coupled Masma (ICP) Hethod)	mg/l	≤0.002	0 002
24 Nickel APHA 1120 8 (Industrively Coupled Plasma (ICP) Method) mg/l 0.01 0.002	23	Barium	APHA 3120 6 (Inductively Coupled Plesma (ICP) Hethod)	mg/l	0.018	0.001
	24	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Hethod)	mg/l	0.01	0.002

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

Ni Ni Aye Lwin

supervisor

Approved By:

Tomoya Suzuki

Director

GOLDEN DOW'A ECO-SYSTEM MYANMAR CO., LTD Lot No. E1. ThilawaSEZ Zone A. Yangor Region, the Union of Myunmar Tel 01-2309051| 09 7969351.19

Report No.: GEM-LAB-201611015

Revision No.: 1

Report Date: 7 November, 2016

Application No.: 0049-C001

Analysis Report

Clent Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-GW-1-1018

Sampling Date : 18 October, 2016

Sample No.

W-1610076

Sampling By :

Customer

Waste Profile No.

Sample Received Date 🕆 18 October, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	12.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test) mg/l		3.34	0
3	COD (Cr)	Cr) APHA 5220D (Close Reflux Colorimetric Method) mg/l		5.0	0.7
4	Total Nitrogen HACH Method 18072 (TNT Persulfate Digestion Method) mg/l		mg/l	0.7	0
5	Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) r		mg/l	0.089	0.05
6	Oll and Grease APHA 5520B (Partition-Gravimetric Method) mg/l		mg/l	< 3.1	3.1
7	otal Coliform APHA 92218 (Standard Total Coliform Fermentation Technique) MPN/100		MPN/100mi	<2	2
8	Color	APHA 2120C (Spectrophotometric Method) TCU		4.46	0
9	Odor	dor APHA 2150 B (Threshold Odor Test) TON		1	0
10	Cyanide	Cyanide HACH 8027 (Pyridine -Pyrazalone Method mg/		0.002	0.002
11	Free Chlonne APHA 4500 CL G (DPD Colorimetric Method) m		mg/i	0.1	0 1
12	Sulphide HACH 8131 (USEPA Methylene Blue Method)		mg/l	< 0.005	0 005
13	Formaldehyde	HACH 8110 (MBTH Method)	mg/I	< 0.003	0.003
14	Phenol	USEPA Metros (27) Tithero is Sectiviprotament Make (AAP Aim Cistiation)	mg/I	0.015	0.002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association ngederation (WEF), Standard Methods for the Examination of

(AWWA), and the Water and Wast

1 61 2

MMAD

No.:	Parameter	Method	Unit	Result	rod
15	Mercury	АРИА 3120 В (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.00054	0.00054
16	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Heehod)	mg/i	0.01	0.002
17	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.01	0.01
18	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.002	0.002
19	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.001	0.001
20	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.01	0.01
21	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Nethod)	mg/I	≤ 0.002	0.002
22	Copper	APHA 3120 6 (Inductively Coupled Plasma (ICP) Nethod)	mg/l	≤ 0.002	0.002
23	Banum	APHA 3120 B (Inductively Coupled Plasma (ECP) Method)	mg/I	0.092	0 001
24	Nickel	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Analyzed By:

Ni Ni Aye Lwin

AWADE

tant supervisor

LAB

Approved By

Tomoya Suzuki

Director

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Water and Waste Water Monitoring Report

December, 2016

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE A (PHASE 1 & 2 OPERATION STAGE)

(Bi-Monthly Monitoring)

December 2016

Myanmar Koei International Ltd.

TABLE OF CONTENTS

	eneral1
CHAPTER	R 2: WATER QUALITY MONITORING2
2.1 M	Ionitoring Items2
2.2 D	escription of Sampling Points
	Ionitoring Method4
2.4 M	Ionitoring Period4
2.5 M	Ionitoring Results5
CHAPT	ER 3: CONCLUSION AND RECOMMENDATIONS8
APPEN	DIX-1 FIELD SURVEY PHOTOS1
APPEN	DIX-2 LABORATORY RESULTS1
	LIST OF TABLES
	LIST OF TABLES
Table 2.1-1	1 Monitoring Items for Water Quality
Table 2.2-1	Outline of Sampling Points
Table 2.3-1	Analytic Method for Water Quality4
Table 2.4-1	Sampling Time of Each Station4
	Results of Water Quality Monitoring at Main Discharging Gates and Discharged ralized STP
Table 2.5-2	Palized STP
	LIST OF FIGURES
Figure 1.1-	1 Location of Sampling Points of Water Quality Monitoring
Figure 1.4-	1 Tide Record for Yangon River, Myanmar5

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone A in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total seven sampling points are set for water quality survey, named SW-1, SW-2, SW-3, SW-4, SW-5, SW-6, and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the seven locations, SW-1, SW-5 are main discharging gates and SW-6 is discharging from centralized Sewage Treatment Plant (STP) which is required to monitor by Environmental Monitoring Plan (EMoP) in EIA report of Thilawa SEZ Zone A. The remaining points SW-2, SW-3 and SW-4 are sampled as a reference monitoring for comparison with discharging points and baseline of discharged creek. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 **Monitoring Items**

Sampling points and parameters for water quality survey are determined so as to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at 7 locations. Among the 7 locations, water flow measurement was carried out at 2 locations (SW-1, SW-6) where can be measured by flow rate instrument. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	GW-2	Remarks
1	pН	0	0	0	0	0	0	0	On-site measurement
2	Water temperature	0	0	0	0	0	0	0	On-site measurement
3	DO	0	0	0	0	0	0	0	On-site measurement
4	BOD	0	0	0	0	0	0	0	Laboratory analysis
5	COD	0	0	0	0	0	0	0	Laboratory analysis
6	Total nitrogen	0	0	0	0	0	0	0	Laboratory analysis
7	Suspended solids	0	0	0	0	0	0	0	Laboratory analysis
8	Total coliform	0	0	0	0	0	0	0	Laboratory analysis
9	Total phosphorous	0	0	0	0	0	0	0	Laboratory analysis
10	Color	0	0	0	0	0	0	0	Laboratory analysis
11	Oil and grease	0	0	0	0	0	0	0	Laboratory analysis
12	Chromium	0	0	0	0	0	0	0	Laboratory analysis
13	Odor	0	0	0	0	0	0	0	Laboratory analysis
14	Flow Rate	0		=		-	0	-	On-site measurement

Source: Myanmar Koei International Ltd.

2.2 **Description of Sampling Points**

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
		Coordinate- N-16° 40' 13.5", E- 96° 16' 39.8"
1	SW-1	Location - Outlet of Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 06.0", E- 96° 16' 43.1"
2	SW-2	Location - Upstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
		Coordinate- N-16° 40' 05.5", E- 96° 16' 41.6"
3	SW-3	Location - Upstream of Shwe Pyauk Creek, after combining with the disposal discharge from MJTD.
		Survey Item – Surface water sampling.
	SW-4	Coordinate- N-16° 39' 54.6", E- 96° 16' 26.4"
4		Location - Downstream of Shwe Pyauk Creek
		Survey Item – Surface water sampling.
		Coordinate- N-16° 40' 10.7", E- 96° 16' 22.6"
5	SW-5	Location - Outlet of Retention Canal
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 26.8", E- 96° 16' 30.7"
6	SW-6	Location - Outlet from STP to Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
ADEL		Coordinate- N-16° 40' 16.6", E- 96° 16' 34.0"
7	GW-2	Location - In Moegyoe Swan Monastery
الص	A	Survey Item - Ground Water Sampling
ource: N	yanmar Ko	ei International Ltd.

SW-1

SW-1 was collected at the discharge point of retention pond which is located in the east of Moegyoe swan monastery. This drainage is flowing from north to south and then connected to the Shwe Pyauk creek through earth drain. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation. In addition, it seems that a part of wastewater from monastery has reached to the culvert in the SEZ area and discharging to the retention pond.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-3 (Reference Point)

SW-3 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 60 m downstream of SW-2. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, industrial compound in the east and paddy field in the south and west respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 500 m downstream of SW-3. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, industrial compound in the east and paddy field in the south and west respectively.

SW-5

SW-5 was collected at retention canal near main gate of Thilawa SEZ. Most of the water collected in this drain is rain water and waste water from surrounding. This drain is also connected to the Shwe Pyauk creek. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation.

SW-6

SW-6 was collected at drain outlet of centralized Sewage Treatment Plant (STP) which is located in the north of Moegyoe swan monastery compound and retention pond (SW-1). Then the treated water is flowing to the retention pond.

GW-2 (Reference of Existing Tube Well)

It is located in the compound of Moegyoe swan monastery. The depth of the tube well is about 62 meter below ground level and same depth with GW-1. The surrounding area are Thilawa SEZ Zone A in the west, retention pond in the east and Dagon-Thilawa road in the south respectively. GW-1, the water sample could not have collected because well water pump was broken and under repairing. Therefore, GW-2, water sample was collected from the nearest tube well as ground water sample.

2.3 Monitoring Method

All water samples were collected with cleaned 1L sampling bottle and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4° C and were transported to the laboratory. Among the parameters; water temperature, pH and DO, were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "Tamaya Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method				
1	Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
2	pН	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
3	Suspended solids (SS)	APHA 2540D (Dry at 103-105'C Method)				
4	Dissolved oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Chec				
5	BOD (5)	APHA 5210 B (5 days BOD Test)				
6	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)				
7	Total coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)				
8	Total nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)				
9	Total phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)				
10	Color	APHA 2120C (Spectrophotometric Method)				
11	Oil and grease	APHA 5520B (Partition-Gravimetric Method)				
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)				
13	Odor	APHA 2150 B (Threshold Odor Test)				
14	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by UC-200V Digital Current Meters)				

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 15th December 2016 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon river, Myanmar on 15th December 2016 is shown in Figure 2.4-1.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-1	15/12/2016 11:50
2	SW-2	15/12/2016 10:46
3	SW-3	15/12/2016 10:30
4	SW-4	15/12/2016 09:56
5	SW-5	15/12/2016 12:13
6	SW-6	15/12/2016 11:17
W V	GW-2	15/12/2016 13:15

Myanmar Koei International Ltd.

Figure 2.4-1 Tide Record for Yangon River, Myanmar

2.5 Monitoring Results

Results of water quality survey are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report.

2.5.1 Results of Water Quality at the Outlet of Sewage Treatment Plant of Industrial Area of Thilawa SEZ and at the Point before discharging to Creek

As the comparison with the target value, the results of suspended solid (SS) and total coliform were exceeded than the target values. As for the result of SS, the result at the outlet of the centralized sewage treatment plant (SW-6) complied with the target value. It implied that effluent from each locator was treated well by the sewage treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) before discharging to creek, exceeded the target value due to the expected reasons; i) surface water run-off from bare land in Zone A and ii) influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

As for the result of total coliform of surface water, the result at the outlet of the centralized sewage treatment plant (SW-6) also complied with the target value. It may prove that effluent from each locator was treated well by the sewage treatment plant. On the other hand, results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) exceeded the target value due to the expected reasons. i) the biggest expected reason might natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the I downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

In the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

On the bases of the above examinations, the following actions shall be taken to control SS and total coliform;

- 1) To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- 2) To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria¹

Perhaps, the possibility that water flowing through the retention canals might include overflowed water from some construction sites with insufficient treatment of coliform should not be excluded from the possible cause.

Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged from Centralized STP

No.	Parameter s	Unit	SW-1	SW-5	SW-6	Target Value
1	Temperatur e	°C	30	31	29	Max. 40
2	pН	4	8.8	8.6	7.3	5.0~9.0
3	Suspended solid (SS)	mg/L	166	34	8	Max. 30
4	Dissolved oxygen (DO)	mg/L	7.4	5.5	3.5	*
5	BOD (5)	mg/L	4.2	7.9	0.0	Max. 20.0
6	COD (Cr)	mg/L	9.5	23.5	9.1	Max. 70
7	Total coliform	MPN/ 100ml	92,000	92,000	< 1.8	Max. 400
8	Total nitrogen mg/L (T-N)		5.6	1.0	14.4	80.0
9	Total phosphorou s mg/L (T-P)		0.216	0.264	0.057	<u>=</u> 1
10	Color (True Color Unit)		12.96	28.05	6.92	•
11	Oil and grease	mg/L	< 3.1	3.5	< 3.1	Max. 5.0
12	Chromium	mg/L	0.014	≤0.002	≤0.002	Max. 0.500
13	Odor (Threshold Odor Number)		1	2	1	(a)
14	Flow Rate	m³/s	0.338		0.011	*

Source: Myanmar Koei International Ltd.

Results of Reference Monitoring for Comparison with Discharging Points and Baseline of Discharged Creek

Since the composition of Total coliform include bacteria from natural origin, and even after Total coliform do not affect when the latter directly, it is recommended that measurement of Escherichia coli (E. Coli) will be added to the water quality monitoring parameters in order to identify health impact by coliform bacteria.

Results of water quality survey are summarized in Table 2.5-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report.

As the comparison with the target value, the results of SS and Total coliform were exceeded than the target value. As for the result of SS, results at the surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) delivered from up downstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ, and ii) delivered from downstream area by tidal effect.

As for the result of Total coliform of surface water, results at the other surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; i) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping site from outside of Thilawa SEZ in the upstream area, and ii) delivered from downstream area by tidal effect.

Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison with Discharging Points and Baseline of Discharged Creek

No.	Parameters	Unit	SW-2	SW-3	SW-4	GW-2	Target Value
1	Temperature	°C	27	27	25	30	Max. 40
2	pH -		7.4	7.6	7.5	8.1	5.0~9.0
3	Suspended solid (SS)	mg/L	462	384	494	10	Max. 30
4	Dissolved oxygen (DO)	mg/L	5.4	8.6	6.3	7.0	170
5	BOD (5)	mg/L	5	3.6	6.2	3.2	Max. 20.0
6	COD (Cr)	mg/L	8.4	11.2	6.9	2.7	Max. 70
7	Total coliform	MPN/ 100ml	92,000	54,000	92,000	< 1.8	Max. 400
8	Total nitrogen (T-N)	mg/L	2.4	2.9	3.2	1.3	80.0
9	Total phosphorous (T-P)	mg/L	0.471	0.354	0.547	0.154	150
10	TCU		16.53	15.42	15.28	5.79	30)
11	Oil and grease	mg/L	< 3.1	< 3.1	< 3.1	< 3.1	Max. 5.0
12	Chromium	mg/L	0.030	0.030	0.036	≤0.002	Max. 0.500
13	Odor	TON (Threshold Odor Number)	1	1	2	1	1/3
14	Flow Rate	m³/s		(*)	1.51	380	(-9/z

Source: Myanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As for the result of SS and total coliform, the results at the outlet of the centralized sewage treatment plant (SW-6) complied with the target value of both of them. It may prove that effluent from each locator was treated well by the sewage treatment plant. On the other hand, parameters of SS and total coliform levels at retention pond (SW-1) and retention canal (SW-5) were exceeded the target values in this period for main discharging gates of Thilawa SEZ Zone A. However, as mentioned in Section 2.5.1, in the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

As for parameters of SS and total coliform in surface water were exceeded the target values at reference monitoring points. As mentioned in Section 2.5.2, expected reasons for exceeding the target values are by various activities such as livestock, industry, and domestic outside of the industrial area of Zone A. However, it cannot reach to the conclusion of what is the reason to be exceeded the target values, thus the continuous monitoring and seasonal data and yearly trend analysis will be necessary.

As for future subject for main discharging points of Thilawa SEZ Zone A, the following action may be taken to achieve the target levels and appropriate water quality monitoring:

- To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria1; and

The mine the possibility of the overflow water from construction sites.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGING POINTS OF THILAWA SEZ ZONE A

Surface water sampling and onsite measurement at SW-1

Surface water sampling and onsite measurement at SW-5

Surface water sampling and onsite measurement at SW-6

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-3

Ground water sampling and onsite measurement at GW-2

There is no water at GW-1

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGING POINTS AND AFTER SEWAGE TREATMENT PLANT

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1. ThilawaSE2 Zone A, Yangon Region, the Union of Myanmar Tel.01-2309051 09 796935149

Report No.: GEM-LAB-201701002

Revision No.: 2

Report Date: 5 January, 2017

Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

: MKI-SW-1-1214

Sampling Date: 15 December, 2016

Sample No.

Waste Profile No.

: W-1612066

Sampling By: Customer

Sample Received Date: 15 December, 2016

Parameter	Method	Unit	Result	LOQ
SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	166.00	0
BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4 21	0
COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	9.5	0.7
Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	5.6	0
Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.216	0.05
Color	APHA 2120C (Spectrophotometric Method)	TCU	12.96	0
Odor	APHA 2150 B (Threshold Odor Test)	TON	1	-
Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	92000	1.8
Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.014	0.002
	SS BOD (5) COD (Cr) Total Nitrogen Total Phosphorous Color Odor Oil and Grease Total Coliform	APHA 2540D (Dry at 103-105'C Method) BOD (5) APHA 5210 B (5 Days BOD Test) COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Color APHA 2120C (Spectrophotometric Method) Odor APHA 2150 B (Threshold Odor Test) Oil and Grease APHA 5520B (Partition-Gravimetric Method) Total Coliform	APHA 2540D (Dry at 103-105'C Method) Mg/I BOD (5) APHA 5210 B (5 Days BOD Test) Mg/I COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Mg/I Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Mg/I Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Mg/I Color APHA 2120C (Spectrophotometric Method) TCU Odor APHA 2150 B (Threshold Odor Test) TON Oil and Grease APHA 5520B (Partition-Gravimetric Method) Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique)	APHA 2540D (Dry at 103-105'C Method) BOD (5) APHA 5210 B (5 Days BOD Test) COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Color APHA 2120C (Spectrophotometric Method) TCU 12.96 Odor APHA 2150 B (Threshold Odor Test) TON 1 Oil and Grease APHA 5520B (Partition-Gravimetric Method) TCU Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique) MPN/100ml 92000

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

Approved By :

Tomoya Suzuki Director

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., I.TD. Lot No. E1 ,ThilewaSE2 Zone A, Yangon Region, the Union of Myanmar Tel.01-2309051 09 796935149

Report No. : GEM-LAB-201701005

Revision No. : 2

Report Date | 5 January, 2017

Application No. | 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-5-1214

Sampling Date: 15 December, 2016

Sample No.

W-1612069

Sampling By : Customer

Waste Profile No.

Sample Received Date: 15 December, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	34.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	7.85	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/i	23.5	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.0	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.264	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	28.05	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	-
8	Oil and Grease	APHA 5520B (Partition-GravImetric Method)	mg/l	3.50	3.1
9	Total Coliform	APHA 9221B (Standard Total Collform Fermentation Technique)	MPN/100ml	92000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastcwater, 21st edition

Analysad By :

Ni Ni Aye Lwin Assistant supervisor

tobcoved By :

Tomoya Suzuki Director

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No. E1, ThilawaSE2 Zone A, Yangon Region, the Union of Myanmar Tel 01-2309051, 09 796935149

Report No. | GEM-LAB-201701006

Revision No. 2

Report Date : 5 January, 2017

Application No. # 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa:

Project Name

Sample Description

Sample No.

MKI-SW-6-1214

Sampling Date: 15 December, 2016

Sample Name

W-1612070

Sampling By: Customer

Waste Profile No.

Sample Received Date: 15 December, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	8.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	0.00	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	9.1	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	14.4	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.057	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	6.92	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	
8	Oll and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100mi	< 1.8	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤ 0.002	0.002
_					

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and

Wastewater, 21st edition

Analysed By :

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

Tomoya Suzuki

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO. LTD. Lot No. (1), ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/09 796935149

Report No. : GEM-LAB-201701003

Revision No. 1 2

Report Date : 5 January, 2017

Application No. | 0049-C001

Analysis Report

Client Name

Myanmar Koel International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-2-1214

Sampling Date: 15 December, 2016

Sample No.

W-1612067

Sampling By : Customer

Sample Received Date : 15 December, 2016

Waste Profile No.

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	462.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.97	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	8.4	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	2.4	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.471	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	tcu	16.53	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100mi	92000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.030	0,002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and

Wastewater, 21st edition

Analysed By

Ni Ni Aye Lwin

Assistant supervisor

Approved By

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

cot No. E1 , ThylawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel 01-230905 | 1/19 796935 | 49

Report No.: GEM-LAB-201701004

Revision No.: 2

Report Date: 5 January, 2017 Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-3-1214

Sampling Date : 15 December, 2016

Sample No.

W-1612068

Sampling By Customer

Waste Profile No.

Sample Received Date ‡ 15 December, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	384.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	3.63	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/I	11.2	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/i	2.9	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.354	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	15.42	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	-
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	54000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.030	0.002
		2			

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and

Wastewater, 21st edition

Analysed By :

Aye Lwin

tant supervisor

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

Lot No. E1 .ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel 01-2309051 09 796935149

Report No.: GEM-LAB-201701007

Revision No. 3 2

Report Date 3 5 January, 2017

Application No. 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-4-1214

Sampling Date: 15 December, 2016

Sample No.

W-1612071

Sampling By : Customer

Waste Profile No.

Sample Received Date: 15 December, 2016

No.	Parameter	Method	Unit	Result	rođ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/I	494.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	6.18	0
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	6.9	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.2	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.547	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	15.28	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	92000	1.8
10	Chromlum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.036	0.002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and

Wastewater, 21st edition

Analysed By

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

Lot No. £1 , ThilawaSEZ Zone A. Yangon Region, the Union of Myanmar Tel 01-2309051/ 09 796935149

Report No.: GEM-LAB-201701001

Revision No.: 2

Report Date: 5 January, 2017

Application No.: 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-GW-2-1214

Sampling Date: 15 December, 2016

Sample No.

W-1612065

Sampling By: Customer

Waste Profile No.

Sample Received Date: 15 December, 2016

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	10.00	0
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	3.19	0
3	COD (Cr)	APHA 5220D (Close Reflux ColorImetric Method)	mg/l	2.7	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.3	0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.154	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	5.79	0
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 92218 (Standard Total Colform Fermentation Technique)	MPN/100ml	< 1.8	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002
-					
	_				

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st edition

sed By : upervisor

Tomoya Suzuki

Thilawa Special Economic Zone (Zone A) **Development Project (Operation Phase)**

Appendix

Water and Waste Water Monitoring Report February, 2017

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE A (PHASE 1 & 2 OPERATION STAGE)

(Bi-Monthly Monitoring)

February 2017

Myanmar Koei International Ltd. MJTD

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	
1.1 General	
CHAPTER 2: WATER QUALITY MONITORING	2
2.1 Monitoring Items	2
2.2 Description of Sampling Points	2
2.3 Monitoring Method	
2.4 Monitoring Period	
2.5 Monitoring Results	6
CHAPTER 3: CONCLUSION AND RECOMMEN	DATIONS9
APPENDIX-1 FIELD SURVEY PHOTOS	1
APPENDIX-2 LABORATORY RESULTS	1
	otte a andonye esterial terinstatorat i i internationat füröt fra för föröt fö
LIST OF TABLE	<u>SS</u>
Table 2.1-1 Monitoring Items for Water Quality	2
Table 2.2-1 Outline of Sampling Points	
Table 2.3-1 Analytic Method for Water Quality	
Table 2.4-1 Sampling Time of Each Station	5
Table 2.5-1 Results of Water Quality Monitoring at Ma	
from Centralized STP	
Table 2.5-2 Result of Water Quality Survey for Referen	
with Discharging Points and Baseline of Discharged Ca	
with Discharging Foliats and Baseline of Discharged Ca	геек8
LIST OF FIGURE	<u>ES</u>
Figure 1.1-1 Location of Sampling Points of Water Qua	ality Monitoring1
Figure 2.4-1 Tide Record for Vangon River Myanmar	
WAWA DE	
MJTD MEN	
G TATO I DE	
Market Califfic	

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone A in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total seven sampling points are set for water quality survey, named SW-1, SW-2, SW-3, SW-4, SW-5, SW-6, and GW-1 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the seven locations, SW-1, SW-5 are main discharging points of Thilawa SEZ and SW-6 is discharging from centralized Sewage Treatment Plant (STP) which is required to monitor by Environmental Monitoring Plan (EMoP) in EIA report of Thilawa SEZ Zone A. The remaining points SW-2, SW-3 and SW-4 are sampled as a reference monitoring for comparison with discharging points and baseline of discharged creek. Moreover, GW-1 is monitored as a reference of existing tube well which located in the monastery compound. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality survey are determined so as to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at seven locations. Among the seven locations, water flow measurement was carried out at two locations (SW-1, SW-6) where can be measured by Current Meter. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	GW-1	Remarks
1	pH	0	0	0	0	0	0	0	On-site measurement
2	Water temperature	0	0	0	0	0	0	0	On-site measurement
3	DO	0	0	0	0	0	0	0	On-site measurement
4	BOD (5)	0	0	0	0	0	0	0	Laboratory analysis
5	COD (Cr)	0	0	0	0	0	0	0	Laboratory analysis
6	Total nitrogen	0	0	0	0	0	0	0	Laboratory analysis
7	Suspended solids	0	0	0	0	0	0	0	Laboratory analysis
8	Total coliform	0	0	0	0	0	0	0	Laboratory analysis
9	Total phosphorous	0	0	0	0	0	0	0	Laboratory analysis
10	Color	0	0	0	0	0	0	0	Laboratory analysis
11	Oil and grease	0	0	0	0	0	0	0	Laboratory analysis
12	Chromium	0	0	0	0	0	0	0	Laboratory analysis
13	Odor	0	0	0	0	0	0	0	Laboratory analysis
14	Flow Rate	0		=	=	55	0	-	On-site measurement

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
		Coordinate- N-16° 40' 13.5", E- 96° 16' 39.8"
1	SW-1	Location - Outlet of Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 06.0", E- 96° 16' 43.1"
2	SW-2	Location - Upstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling.
		Coordinate- N-16° 40' 05.5", E- 96° 16' 41.6"
3	SW-3	Location - Upstream of Shwe Pyauk Creek, after combining with the disposal discharge from MJTD.
		Survey Item – Surface water sampling.
		Coordinate- N-16° 39' 54.6", E- 96° 16' 26.4"
4	SW-4	Location - Downstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling.
		Coordinate- N-16° 40' 10.7", E- 96° 16' 22.6"
5	SW-5	Location - Outlet of Retention Canal
		Survey Item – Surface water sampling and water flow rate measurement.
		Coordinate- N-16° 40' 26.8", E- 96° 16' 30.7"
6	SW-6	Location - Outlet from STP to Retention Pond
		Survey Item – Surface water sampling and water flow rate measurement.
ADEVE		Coordinate- N-16° 40' 25.1", E- 96° 16' 31.7"
7	GW-1	Location - In Moegyoe Swan Monastery
PTD)	ME	Survey Item – Ground Water Sampling
ource:	mar Ko	ei International Ltd.

SW-1

SW-1 was collected at the discharge point of retention pond which is located in the east of Moegyoe swan monastery. This drainage is flowing from north to south and then connected to the Shwe Pyauk creek through earth drain. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation. In addition, it seems that a part of wastewater from monastery has reached to the culvert in the SEZ area and discharging to the retention pond.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-3 (Reference Point)

SW-3 was collected at the upstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 60 m downstream of SW-2. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek which is flowing from east to west and then entering into the Yangon river. It is distance about 500 m downstream of SW-3. This sampling point is located at south of Zone A area and Dagon-Thilawa road. The surrounding area are Zone A in the north, local industrial zone in the east and paddy field in the south and west respectively.

SW-5

SW-5 was collected at retention canal near main gate of Thilawa SEZ. Most of the water collected in this drain is rain water and waste water from surrounding. This drain is also connected to the Shwe Pyauk creek. The water quality of this monitoring point has been influenced by the water from downstream due to flow back by tidal fluctuation.

SW-6

SW-6 was collected at drain outlet of centralized Sewage Treatment Plant (STP) which is located in the north of Moegyoe swan monastery compound and retention pond (SW-1). Then the treated water is flowing to the retention pond.

GW-1 (Reference of Existing Tube Well)

GW-1 was collected from tube well as ground water sample. It is located in the compound of Moegyoe swan monastery. The surrounding area are Zone A in the west, retention pond in the east and Dagon-Thilawa road in the south respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottle and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4° C and were transported to the laboratory. Among the parameters; water temperature, pH and DO, were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "Tamaya Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	рН	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended solids (SS)	APHA 2540D (Dry at 103-105'C Method)
4	Dissolved oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD (5)	APHA 5210 B (5 days BOD Test)
6	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)
7	Total coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)
9	Total phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Oil and grease	APHA 5520B (Partition-Gravimetric Method)
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
13	Odor APHA 2150 B (Threshold Odor Test)	
14	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by UC-200V Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 13th February 2017 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon river, Myanmar on 13th February 2017 is shown in Figure 2.4-1.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-1	13/02/2017 11:30
2	SW-2	13/02/2017 10:42
3	SW-3	13/02/2017 10:30
4	SW-4	13/02/2017 09:47
5	SW-5	13/02/2017 11:54
6	SW-6	13/02/2017 11:07
7	GW-1	13/02/2017 12:27

Source: Myanmar Koei International Ltd.

2.5 Monitoring Results

Results of water quality monitoring are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report.

2.5.1 Results of Water Quality at the Outlet of Sewage Treatment Plant of Industrial Area of Thilawa SEZ and at the Point before discharging to Creek

As the comparison with the target value, the results of suspended solid (SS) and total coliform and oil and grease were exceeded than the target value. As for the result of SS, the result at the outlet of the centralized STP (SW-6) complied with the target value. It implied that effluents from each locator were treated well by the STP. On the other hand, results at the monitoring points of retention pond (SW-1) exceeded the target value due to the expected reasons; i) surface water run-off from bare land in Zone A and ii) influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation.

As for the result of total coliform of surface water, the result at the outlet of the centralized STP (SW-6) exceeded the target value. A possible reason for exceeding the target value is that retained water did not contact sufficiently with chlorine in the chlorine injection tank before discharging to outlet of the centralized STP at the time of sampling. However, the monitoring result of total coliform (4,900 MPN/mL) was much lower than the results outside of Zone A (more than 160,000 MPN/mL at SW-2, -3, and -4) and complied with the environment quality standard for water pollution in Japan (not more than 5,000 MPN/mL as Class B for water supply class 3 and fishery class 2¹). Besides, this exceeding event is incidental case because the total coliform monitoring results in the previous monitoring months complied with the target value. Thus, the impact on total coliform to the surrounding area is not expected.

The results at the monitoring points of retention pond (SW-1) and retention canal (SW-5) also exceeded the target value due to the expected reasons. i) the biggest expected reason might be natural bacteria existed in all area of Zone A because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention canals and retention ponds and ii) the second suspect might be influence by water from the downstream of retention pond (SW-1) and retention canal (SW-5) due to flow back by tidal fluctuation.

As for the result of oil and grease of surface water, the result at the outlet of the centralized STP (SW-6) complied with the target value. It may prove that effluents from each locator were treated well by the STP. On the other hand, results at the other surface water monitoring point (SW-1) slightly higher than the target value due to the expected reasons; influence by water from the downstream of retention pond (SW-1) due to flow back by tidal fluctuation.

In the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

On the bases of the above examinations, the following actions shall be taken to control SS and total coliform, and oil and grease;

There are six classes (AA, A, B, C, D, E; Class AA is most strict) for river water quality standards in environmental quality standard, "water supply class 3" tandard; our purify water using pre-treatment and other advanced method and "fishery class 2" targets for alpha-oligosaprobic marine products as Salmonidae (salmon/trout) species, sweetfish, and marine products for fishery class 3. In detail, see the http://www.env.go.jp/en/water/wq/wp.pdf (accessed in July 2017).

- 1) To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- 2) To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria¹

Perhaps, the possibility that water flowing through the retention canals might include overflowed water from some construction sites with insufficient treatment of coliform should not be excluded from the possible cause.

Table 2.5-1 Results of Water Quality Monitoring at Main Discharging Gates and Discharged from Centralized STP

No.	Parameters	Unit	SW-1	SW-5	SW-6	Target Value
1	Temperature	.C	31	31	28	Max. 40
2	рН		8.2	8.7	7.4	5.0~9.0
3	Suspended solid (SS)	mg/L	272	30	18	Max. 30
4	Dissolved oxygen (DO)	mg/L	6.8	7.8	5.7	별
5	BOD (5)	mg/L	4.07	4.02	2.69	Max. 20.0
6	COD (Cr)	mg/L	12.9	17.4	< 0.7	Max. 70
7	Total coliform	MPN/100ml	92,000	820	4900	Max. 400
8	Total nitrogen (T-N)	mg/L	10.5	1.5	18.0	80.0
9	Total phosphorous (T-P)	mg/L	0.097	0.065	0.157	•
10	Color	TCU (True Color Unit)	14.03	25.18	7.50	
11	Oil and grease	mg/L	5.45	< 3.1	< 3.1	Max. 5.0
12	Chromium	mg/L	≤0.002	≤0.002	≤0.002	Max. 0.500
13	Odor	TON (Threshold Odor Number)	2	1	1.4	18
14	Flow Rate	m³/s	0.024	2	0.007	-

Source: Myanmar Koei International Ltd.

2.5.2 Results of Reference Monitoring for Comparison with Discharging Points and Baseline of Discharged Creek

Results of water quality monitoring are summarized in Table 2.5-2. The results were compared with the target value of effluent water quality discharging to water body stipulated in the EIA report.

As the comparison with the target value, the results of SS and total coliform and oil and grease were exceeded than the target value. As for the result of SS, results at the surface water monitoring points (SW-2 and SW-3) exceeded the target value due to two expected reasons; 1) delivered from upstream area such as natural origin and wastewater from the local industrial zone outside of Thilawa SEZ, and 2) delivered from downstream area by tidal effect.

As for the result of total coliform of surface water, results at the other surface water monitoring points (SW-2, SW-3, SW-4) exceeded the target value due to two expected reasons; 1) runoff of animal waste from the undeveloped area and delivered from local industrial zone and illegal dumping sites.

Since the composition of Total coliform include bacteria from natural origin, and even after Total coliform do not affect human health directly, it is recommended that measurement of Escherichia coli (E. Coli) will be added to the water quantity monitoring parameters in order to identify health impact by coliform bacteria.

from outside of Thilawa SEZ in the upstream area, and 2) delivered from downstream area by tidal effect.

As for the result of oil and grease of surface water, results at the other surface water monitoring point (SW-2) slightly higher than the target value due to expected reason;1) oil contaminated water from the local industrial zone outside of Thilawa SEZ and 2) delivered from downstream area by tidal effect.

Table 2.5-2 Result of Water Quality Survey for Reference Monitoring Points for Comparison with Discharging Points and Baseline of Discharged Creek

No.	Parameters	Unit	SW-2	SW-3	SW-4	GW-1	Target Value
1	Temperature	.C	27	27	26	35	Max. 40
2	pН	(A)	7.4	7.4	7.4	7.7	5.0~9.0
3	Suspended solid (SS)	mg/L	1400	2002	16	2	Max. 30
4	Dissolved oxygen (DO)	mg/L	6.0	6.3	5.8	5.9	124
5	BOD (5)	mg/L	4.42	5.83	4.18	2.42	Max. 20.0
6	COD (Cr)	mg/L	48.0	10.8	18.4	6.7	Max. 70
7	Total coliform	MPN/ 100ml	> 160,000	> 160,000	> 160,000	13	Max. 400
8	Total nitrogen (T-N)	mg/L	2.6	3.6	3.6	2.4	80.0
9	Total phosphorous (T-P)	mg/L	< 0.05	< 0.05	0.089	0.067	3
10	Color	TCU (True Color Unit)	13.34	13.20	14.26	3.93	-
11	Oil and grease	mg/L	5.64	< 3.1	4.73	< 3.1	Max. 5.0
12	Chromium	mg/L	≤0.002	0.082	0.134	≤0.002	Max. 0.500
13 AWA	Odor	TON (Threshold Odor Number)	2	2	1	1	-
14	Chrw Rate	m³/s	2		27	\$	**

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As for the result of SS and oil and grease, the results at the outlet of the centralized sewage treatment plant (SW-6) complied with the both target values. It may prove that effluent from each locator was treated well by the sewage treatment plant. The result of total coliform at SW-6 exceeding the target values but the value this event was incidental case and its impact is not expected because i) the result was much lower than the results outside of Zone A and complied with the environment quality standard for water pollution in Japan and ii) the results in the previous monitoring months complied with the target value.

On the other hand, parameters of SS, total coliform and oil and grease levels at retention pond (SW-1) and retention canal (SW-5) were exceeded the target values in this period for main discharging gates of Thilawa SEZ Zone A. However, as mentioned in Section 2.5.1, in the first place, the monitoring points of retention pond (SW-1) and retention canal (SW-5) should be changed to a little upstream where are possible to avoid flow back by tidal fluctuation in order to evaluate the impact on water quality from the industrial area of Zone A to public water body.

As for parameters of SS and total coliform in surface water were exceeded the target values at reference monitoring points. As mentioned in Section 2.5.2, expected reasons for exceeding the target values are by various activities such as livestock, industry, and domestic outside of the industrial area of Zone A. However, it cannot reach to the conclusion of what is the reason to be exceeded the target values, thus the continuous monitoring and seasonal data and yearly trend analysis will be necessary.

As for future subject for main discharging points of Thilawa SEZ Zone A, the following action may be taken to achieve the target levels and appropriate water quality monitoring:

- To review the location of the monitoring points (SW-1 and SW-5) and change the location to control water quality to public water body through discussions with TSMC;
- To monitor Escherichia coli (E. Coli) level to identify health impact by coliform bacteria1; and
- To examine the possibility of the overflow water from construction sites.
- To examine the effectiveness of chlorine injection through regular monitoring.

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGING POINTS OF THILAWA SEZ ZONE A

Surface water sampling and onsite measurement at SW-1

Surface water sampling and onsite measurement at SW-5

Surface water sampling and onsite measurement at SW-6

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-3

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-1

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGING POINTS AND AFTER CENTRALIZED STP

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1, ThilawaSE2 Zone A, Yangon Region, the Union of Myanmar Tel. 01-2309051, 09.796935149

Report No.: GEM-LAB-201702125

Revision No.: 1

Report Date: 27 February, 2017

Application No.: 0049-C001

Analysis Report

Client Name Myanmar Koei International LTD (MKI)

Address No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample No.

Sample Name MKI-SW-1-0213

: W-1702078

Sampling Date: 13 February, 2017

Sampling By: Customer

Waste Profile No.

Sample Received Date: 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	272.00	3
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.07	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	12.9	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	10.5	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.097	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.03	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	-
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	5.45	3.1
9	Total Coliform	APHA 9221B (Standard Total Collform Fermentation Technique)	MPN/100ml	92000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin

Assistant supervisor

Approved By

AWA DE

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1 , ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051/ 09 796935149

Report No.: GEM-LAB-201702128

Revision No. : 1

Report Date: 27 February, 2017

Application No.: 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

Waste Profile No.

MKI-SW-5-0213

Sampling Date: 13 February, 2017

Sample No.

□ W-1702081

Sampling By : Customer

Sample Received Date: 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	30.00	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.02	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	17.4	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.5	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.065	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	25.18	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	
В	Oll and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Collform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	820	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By:

it supervisor

Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1,ThilawaSEE Zone A, Yangon Region, the Union of Myanmar Tel 01-2309051, 09 796935149

Report No.: GEM-LAB-201702129

Revision No.: 1

Report Date: 27 February, 2017

Application No.: 0049-C001

Analysis Report

Client Name : Myanmar Koei International LTD (MKI)

Address No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name : MKI-5W-6-0213 Sampling Date : 13 February, 2017

Sample No. : W-1702082 Sampling By : Customer

Waste Profile No. : - 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	18.00	.=.
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	2.69	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	< 0.7	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	18.0	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.157	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	7.50	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	5-6
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	4900	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark LOQ · Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By :

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

AWADA

Tomoya Suzuki

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGING **POINTS AND BASELINE OF DISCHARGED CREEK**

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1 , ThilawaSEZ Zone A. Yangon Region, the Union of Myanmar Tel 01-2309051/ 09 796935149

Report No.: GEM-LAB-201702126

Revision No.: 1

Report Date: 27 February, 2017

Application No.: 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-SW-2-0213

Sampling Date 13 February, 2017

Sample No.

Waste Profile No.

W-1702079

Sampling By 4 Customer

Sample Received Date 11 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	1400.00	=
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.42	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	48.0	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	2.6	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	< 0.05	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	13.34	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	-
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	5.64	3.1
9	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	> 160000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

Tomoya Suzuki

GÖLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1 ,ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar

Tel 01-2309051/ 09 796935149

Report No.: GEM-LAB-201702127

Revision No.: 1

Report Date: 27 February, 2017 Application No.: 0049-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

@ MKI-SW-3-0213

Sampling Date: 13 February, 2017

Sample No.

W-1702080

Sampling By : Customer

Waste Profile No.

Sample Received Date: 13 February, 2017

Parameter	Method	Unit	Result	LOQ
SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	2002.00	-
BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.83	0.00
COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	10.8	0.7
Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.6	0.0
Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	< 0.05	0.05
Color	APHA 2120C (Spectrophotometric Method)	TCU	13.20	0.00
Odor	APHA 2150 B (Threshold Odor Test)	TON	2	-
Oil and Grease	APHA 55208 (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	> 160000	1.8
Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.082	0.002
	SS BOD (5) COD (Cr) Total Nitrogen Total Phosphorous Color Odor Oll and Grease Total Coliform	APHA 2540D (Dry at 103-105'C Method) BOD (5) APHA 5210 B (5 Days BOD Test) COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Color APHA 2120C (Spectrophotometric Method) Odor APHA 2150 B (Threshold Odor Test) Oll and Grease APHA 5520B (Partition-Gravimetric Method) Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique)	APHA 2540D (Dry at 103-105'C Method) mg/l BOD (5) APHA 5210 B (5 Days BOD Test) mg/l COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) mg/l Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) mg/l Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) mg/l Color APHA 2120C (Spectrophotometric Method) TCU Odor APHA 2150 B (Threshold Odor Test) TON Oll and Grease APHA 5520B (Partition-Gravimetric Method) mg/l Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique) MPN/100ml	APHA 2540D (Dry at 103-105'C Method) BOD (5) APHA 5210 B (5 Days BOD Test) COD (Cr) APHA 5220D (Close Reflux Colorimetric Method) Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method) Total Phosphorous APHA 4500-P E (Ascorbic Acid Method) Color APHA 2120C (Spectrophotometric Method) TCU 13.20 Odor APHA 2150 B (Threshold Odor Test) TON 2 Oll and Grease APHA 9221B (Standard Total Coliform Fermentation Technique) MPN/100ml > 160000

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By:

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

Tomoya Suzuki

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1, ThilawaSEZ Zone A, Yangon Region, the Union of Myanmar Tel:01-2309051: 09.796935149

Report No. # GEM-LAB-201702130

Revision No. 1

Report Date 🖟 27 February, 2017

Application No. 7 0049-C001

Analysis Report

Client Name

; Myanmar Koei International LTD (MKI)

Address

: No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

w ==

Sample Description

Sample Name

Waste Profile No.

Sampling Date : 13 February, 2017

Sample No.

W-1702083

Sampling By || Customer

Sample Received Date : 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	16.00	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.18	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	18.4	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.6	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.089	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.26	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	7.5
8	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	4.73	3.1
9	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	> 160000	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.134	0.002
	_				

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Tomoya Suzuki

Approved By :

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD Lot No. E1, Thalawasez Zone A, Yangon Region, the Union of Myanmar Tcl 01-2309051 | 09 796935149

Report No. : GEM-LAB-201702124

Revision No.: 1

Report Date: 27 February, 2017 Application No.: 0049-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

No.1A /28, Mya Thidar Housing, Ward 11, South Okkalapa.

Project Name

Sample Description

Sample Name

MKI-GW-1-0213

Sampling Date: 13 February, 2017

Sample No.

W-1702077

Sampling By: Customer

Waste Profile No.

Sample Received Date: 13 February, 2017

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	2.00	122
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	2.42	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/I	6.7	0.7
4	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	2.4	0.0
5	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.067	0.05
6	Color	APHA 2120C (Spectrophotometric Method)	TCU	3.93	0.00
7	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	π
8	Oil and Grease	APHA SS20B (Partition-Gravimetric Method)	mg/l	< 3.1	3.1
9	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	13	1.8
10	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤ 0.002	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin

Assistant supervisor

Approved By :

Tomoya Suzuki

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Ground Subsidence and Ground Water Usage Monitoring Status

(Construction Monthly Progress Report- October to December 2016)

PENTA-SUNTAC PARTNERSHIP

Thilawa SEZ Zone A Development Project

Attachment 2.5. Ground Subsidence Monitoring Status

MONTHLY PROGRESS REPORT ATTACHMENT 2.5- GROUND SUBSIDENCE MONITORING STATUS PHASE-1

Jan-17

S.N	Date of performance	Predefined level	Ground level over	Subsidence	Sample
		of landfill(m)	a weekly period (m)	(m)	density
1	27-Mar-14	7	6.999	-0.001	
2	3-Apr-14	7	6.998	-0.002	
3	9-Apr-14	7	6.998	-0.002	
4	24-Apr-14	7	7	0	
5	1-May-14	7	7	0	
6	8-May-14	7	7	0	
7	15-May-14	7	7	0	
8	22-May-14	7	7	0	
9	30-May-14	7	7	0	
10	5-Jun-14	7	7	0	
11	12-Jun-14	7	7	0	
12	19-Jun-14	7	7	0	
13	26-Jun-14	7	7	0	
14	3-Jul-14	7	6.999	-0.001	
15	10-Jul-14	7	6.999	-0.001	
16	17-Jul-14	7	7	0	
17	24-Jul-14	7	7	0	
18	31-Jul-14	7	Under repairing works	s and no reading	
19	7-Aug-14	7	Under repairing works		
20	14-Aug-14	7	7	0	
21	21-Aug-14	7	7	0	
22	28-Aug-14	7	7	0	
23	4-Sep-14	7	7	0	
24	11-Sep-14	7	7	0	
25	18-Sep-14	7	7	0	
26	25-Sep-14	7	7	0	
27	2-Oct-14	7	7.012	0.012	
28	9-Oct-14	7	7.014	0.014	
ADEVE	16-Oct-14	7	7.013	0.013	
3/60	23-Oct-14	7	7.012	0.012	
TPE	30-Oct-14	7	7.014	0.014	
1 + 0 HIM	6-Nov-14	7	7.014	0.014	

MONTHLY PROGRESS REPORT ATTACHMENT 2.5- GROUND SUBSIDENCE MONITORING STATUS PHASE-1

S.N	Date of performance	Predefined level of landfill(m)	Ground level over a weekly period (m)	Subsidence (m)	Sample density
33	13-Nov-14	7	7.015	0.015	711
34	20-Nov-14	7	7.015	0.015	
35	27-Nov-14	7	7.015	0.015	
36	4-Dec-14	7	7.017	0.017	
37	11-Dec-14	7	7.015	0.015	
38	18-Dec-14	7	7.015	0.015	
39	25-Dec-14	7	7.015	0.015	
40	1-Jan-15	7	7.015	0.015	
41	8-Jan-15	7	7.017	0.017	
42	15-Jan-15	7	7.015	0.015	
43	22-Jan-15	7	7.015	0.015	
44	29-Jan-15	7	7.015	0.015	
45	5-Feb-15	7	7.004	0.004	
46	12-Feb-15	7	7.004	0.004	
47	19-Feb-15	7	7.004	0.004	
48	26-Feb-15	7	7.005	0.005	
49	5-Mar-15	7	7.005	0.005	
50	12-Mar-15	7	6.995	-0.005	
51	19-Mar-15	7	6.993	-0.007	
52	26-Mar-15	7	6.997	-0.003	
53	2-Apr-15	7	6.997	-0.003	
54	9-Apr-15	7	6.993	-0.007	
55	23-Apr-15	7	6.996	-0.004	
56	30-Apr-15	7	6.995	-0.005	
57	7-May-15	7	6.997	-0.003	
58	14-May-15	7	6.996	-0.004	
59	21-May-15	7	6.996	-0.004	
60	28-May-15	7	6.995	-0.005	
61	5-Jun-15	7	6.992	-0.008	-
62	11-Jun-15	7	6.991	-0.009	
63	18-Jun-15	7	6.989	-0.011	
64	26-Jun-15	7	6.990	-0.010	awa o
65	2-Jul-15	7	6.990	-0.010	3
66	9-Jul-15	7	6.989	-0.011	MJT
67	16-Jul-15	7	6.989	-0.011	MJT:
68	23-Jul-15	7	6.988	-0.012	

5.N	Date of performance	Predefined level of landfill(m)	a weekly period	Subsidence (m)	Sample density
69	30-Jul-15	7	(m) 6.986	-0.014	
70	6-Aug-15	7	6.985	-0.015	
71	13-Aug-15	7	6.984	-0.016	
72	20-Aug-15	7	6.988	-0.012	
73	27-Aug-15	7	6.987	-0.013	
74	3-Sep-15	7	6.986	-0.014	
75	10-Sep-15	7	6.987	-0.013	
76	17-Sep-15	7	6.986	-0.014	
77	24-Sep-15	7	6.991	-0.009	
78	1-Oct-15	7	6.995	-0.005	
79	8-Oct-15	7	6.989	-0.011	
80	15-Oct-15	7	6.992	-0.008	
81	22-Oct-15	7	6.989	-0.011	
82	29-Oct-15	7	6.990	-0.01	
83	5-Nov-15	7	-	-	
84	12-Nov-15	7	6.988	-0.012	
85	19-Nov-15	7	6.986	-0.014	
86	26-Nov-15	7	-	-	
87	3-Dec-15	7	6.990	-0.010	
88	10-Dec-15	7	6.991	-0.009	
89	17-Dec-15	7	6.992	-0.008	
90	24-Dec-15	7	6.994	-0.006	
91	31-Dec-15	7	6.994	-0.006	

MONTHLY PROGRESS REPORT ATTACHMENT 2.5- GROUND SUBSIDENCE MONITORING STATUS PHASE-2

Jan-17

S.N	Date of performance	Predefined level of landfill(m)	Ground level over a weekly period (m)	Subsidence (m)	Sample density
1	7-Jan-16	7	6.989	-0.011	
2	14-Jan-16	7	6.990	-0.010	
3	21-Jan-16	7	6.993	-0.007	
4	28-Jan-16	7	6.996	-0.004	
5	4-Feb-16	7	6.995	-0.005	
6	11-Feb-16	7	6.989	-0.011	
7	18-Feb-16	7	6.989	-0.011	
8	25-Feb-16	7	6.992	-0.008	
9	3-Mar-16	7	6.997	-0.003	
10	10-Mar-16	7	6.995	-0.005	
11	17-Mar-16	7	6.995	-0.005	
12	24-Mar-16	7	6.990	-0.010	
13	31-Mar-16	7	6.987	-0.013	
14	7-Apr-16	7	6.990	-0.010	
15	21-Apr-16	7	6.992	-0.008	
16	28-Apr-16	7	6.995	-0.005	
17	5-May-16	7	6.989	-0.011	
18	12-May-16	7	6.987	-0.013	
19	19-May-16	7	6.991	-0.009	
20	26-May-16	7	6.994	-0.006	
21	2-Jun-16	7	6.997	-0.003	
22	9-Jun-16	7	6.998	-0.002	
23	16-Jun-16	7	6.999	-0.001	
24	23-Jun-16	7	6.992	-0.008	
25	30-Jun-16	7	6.990	-0.010	
26	7-Jul-16	7	6.994	-0.006	
27	14-Jul-16	7	6.996	-0.004	
28	21-Jul-16	7	6.991	-0.009	AHLAWA DE
29	28-Jul-16	7	6,993	-0.007	13/
30	4-Aug-16	7	6.994	-0.006	MJT

S.N	Date of performance	Predefined level of landfill(m)	Ground level over a weekly period (m)	Subsidence (m)	Sample density
31	11-Aug-16	7	6.996	-0.004	
32	18-Aug-16	7	6.995	-0.005	
33	25-Aug-16	7	6.993	-0.007	
34	1-Sep-16	7	6.992	-0.008	
35	8-Sep-16	7	6.993	-0.007	
36	15-Sep-16	7	6.994	-0.006	
37	22-Sep-16	7	6.994	-0.006	
38	29-Sep-16	7	6.995	-0.005	
39	6-Oct-16	7	6.996	-0.004	
40	13-Oct-16	7	6.995	-0.005	
41	20-Oct-16	7	6.993	-0.007	
42	27-Oct-16	7	6.994	-0.006	
43	3-Nov-16	7	6.994	-0.006	
44	10-Nov-16	7	6.995	-0.005	
45	17-Nov-16	7	6.995	-0.005	
46	24-Nov-16	7	6.996	-0.004	
47	1-Dec-16	7	6.996	-0.004	
48	8-Dec-16	7	6.994	-0.006	
49	15-Dec-16	7	6.994	-0.006	
50	22-Dec-16	7	6.995	-0.005	
51	5-Jan-17	7	6.994	-0.006	
52	12-Jan-17	7	6.994	-0.006	
53	19-Jan-17	7	6.995	-0.005	
54	26-Jan-17	7	6.996	-0.004	

PENTA-SUNTAC PARTNERSHIP

Thilawa SEZ Zone A Development Project

Attachment 2.6 - Ground Water Usage Monitoring Status

MONTHLY PROGRESS REPORT ATTACHMENT 2.6 - GROUND WATER USAGE MONITORING STATUS

Feb-17

S.N	Date of Performance	Accumulative usage (volume) of ground water in site region, (m ³)	Weekly water consumption (m ³)	Remarks
1	27-Mar-14	25	25	
2	3-Apr-14	49	24	
3	9-Apr-14	65	16	
4	24-Apr-14	91	26	
5	1-May-14	134	43	
6	8-May-14	160	26	
7	15-May-14	197	37	
8	22-May-14	228	31	
9	29-May-14	259	31	
10	5-Jun-14	294	35	
11	12-Jun-14	354	60	
12	19-Jun-14	407	53	
13	26-Jun-14	458	51	
14	3-Jul-14	525	67	
15	10-Jul-14	571	46	
16	17-Jul-14	654	83	
17	24-Jul-14	747	93	
18	31-Jul-14	868	121	
19	7-Aug-14	988	120	
20	14-Aug-14	1141	153	
21	21-Aug-14	1316	175	
22	28-Aug-14	1498	182	
23	4-Sep-14	1686	188	
24	11-Sep-14	1884	198	
25	18-Sep-14	2107	223	
26	25-Sep-14	2300	193	
27	2-Oct-14	2401	101	
28	9-Oct-14	2544	143	
29	16-Oct-14	2616	132	
MANADEVE	23-Oct-14	2852	176	
/31	30-Oct-14	2983	131	
MJTD	6-Nov-14	3048	65	

S.N	Date of Performance	Accumulative usage (volume) of ground	Weekly water consumption (m³)	Remarks
		water in site region. (m3)		
33	13-Nov-14	3210	162	
34	20-Nov-14	3370	160	
35	27-Nov-14	3520	150	
36	4-Dec-14	3643	123	
37	11-Dec-14	3792	149	
38	18-Dec-14	3924	132	
39	25-Dec-14	4053	129	
40	1-Jan-15	4170	117	
41	8-Jan-15	4310	140	
42	15-Jan-15	4478	168	
43	22-Jan-15	4650	172	
44	29-Jan-15	4831	181	
45	5-Feb-15	5000	169	
46	12-Feb-15	5230	230	
47	19-Feb-15	5423	193	
48	26-Feb-15	5645	222	
49	5-Mar-15	5835	190	
50	12-Mar-15	6064	229	
51	19-Mar-15	6300	236	
52	26-Mar-15	6559	259	
53	2-Apr-15	6795	236	
54	9-Apr-15	7025	230	
55	16-Apr-15	7166	141	
56	23-Apr-15	7404	238	
57	30-Apr-15	7649	245	
58	7-May-15	7900	251	
59	14-May-15	8161	261	
60	21-May-15	8384	223	
61	28-May-15	8582	198	
62	4-Jun-15	8787	205	
63	11-Jun-15	8990	203	
64	18-Jun-15	9138	148	
65	25-Jun-15	9260	122	THILAWA DEL
66	2-Jul-15	9430	170	Ego Company
67	9-Jul-15	9560	130	MJTD
68	16-Jul-15	9710	150	WHITED * MINOR

S.N	Date of Performance	Accumulative usage (volume) of ground	Weekly water consumption	Remarks
		water in site region. (m ³)	(m³)	
69	23-Jul-15	9880	170	
70	30-Jul-15	9990	110	
71	6-Aug-15	10240	250	
72	13-Aug-15	10440	200	
73	20-Aug-15	10668	228	
74	27-Aug-15	10948	280	
75	3-Sep-15	11150	202	
76	10-Sep-15	11400	250	
77	17-Sep-15	11597	197	
78	24-Sep-15	11800	203	
79	1-Oct-15	12000	200	
80	8-Oct-15	12240	240	
81	15-Oct-15	12370	130	
82	22-Oct-15	12620	250	
83	29-Oct-15	12740	120	
84	5-Nov-15	12915	175	
85	12-Nov-15	13155	240	
86	19-Nov-15	13323	168	
87	26-Nov-15	13578	255	
88	3-Dec-15	13790	212	
89	10-Dec-15	14102	312	
90	17-Dec-15	14378	276	
91	24-Dec-15	14589	211	
92	31-Dec-15	14780	191	
93	7-Jan-16	14991	211	
94	14-Jan-16	15212	221	
95	21-Jan-16	15353	141	
96	28-Jan-16	15560	207	
97	4-Feb-16	15700	140	
98	11-Feb-16	15876	176	
99	18-Feb-16	16128	252	
100	25-Feb-16	16343	215	
101	3-Mar-16	16450	107	
HILANA DEVELO	10-Mar-16	16670	220	
MJTD	17-Mar-16	16778	108	
104 III	24-Mar-16	16889	111	

S.N	Date of Performance	Accumulative usage (volume) of ground water in site region, (m³)	Weekly water consumption (m³)	Remarks
105	31-Mar-16	17132	243	
106	7-Apr-16	17250	118	
107	14-Apr-16	17380	130	
108	21-Apr-16	17470	90	
109	28-Apr-16	17580	110	
110	5-May-16	17700	120	
111	12-May-16	17880	180	
112	19-May-16	17987	107	
113	26-May-16	18156	169	
114	2-Jun-16	18280	124	
115	9-Jun-16	18430	150	
116	16-Jun-16	18575	145	
117	23-Jun-16	18757	182	
118	30-Jun-16	18882	125	
119	7-Jul-16	19000	118	
120	14-Jul-16	19165	165	
121	21-Jul-16	19274	109	
122	28-Jul-16	19387	113	
123	4-Aug-16	19510	123	
124	11-Aug-16	19617	107	
125	18-Aug-16	19738	121	
126	25-Aug-16	19889	151	
127	1-Sep-16	20020	131	
128	8-Sep-16	20174	154	
129	15-Sep-16	20316	142	
130	22-Sep-16	20455	139	
131	29-Sep-16	20611	156	
132	6-Oct-16	20734	123	
133	13-Oct-16	20878	144	
134	20-Oct-16	21008	130	
135	27-Oct-16	21144	136	
136	3-Nov-16	21270	126	
137	10-Nov-16	21402	132	THILAWA DELE
138	17-Nov-16	21519	117	MJTD
139	24-Nov-16	21628	109	
140	1-Dec-16	21738	110	THED * WIL

.N	Date of Performance	Accumulative usage (volume) of ground water in site region, (m ³)	Weekly water consumption (m ³)	Remarks
141	8-Dec-16	21869	131	
142	15-Dec-16	21996	127	
143	22-Dec-16	22119	123	
144	29-Dec-16	22233	114	
145	5-Jan-17	22345	112	
146	12-Jan-17	22452	107	
147	19-Jan-17	22575	123	
148	26-Jan-17	22690	115	
149	2-Feb-17	22794	104	
150	9-Feb-17	22892	98	
151	16-Feb-17	22999	107	
152	23-Feb-17	23123	124	
		:		
	Total Usage	FIRST SWIFT SHE	23123	-

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Waste Disposal Record

(Construction Monthly Progress Report-October to December 2016)

PENTA-SUNTAC PARTNERSHIP

Thilawa SEZ Zone A Development Project

Attachment 2.8 - Waste Disposal Record

PENTA-SUNTAC PARTNERSHIP Thilawa SEZ ZONE A Development Project

MONTHLY PROGRESS REPORT ATTACHMENT 2.8 - WASTE DISPOSAL MONITORING

January 2017

Item	Date	Description	No. of Loads	Remarks
1	30-Jun-14	Waste Disposal	1	YCDC
2	10-Jul-14	Waste Disposal	1	YCDC
3	11-Aug-14	Waste Disposal	1	YCDC
4	12.Aug-14	Waste Disposal	1	YCDC
5	17-Sep-14	Waste Disposal	1	YCDC
6	26-Sep-14	Waste Disposal	1	YCDC
7	29-Sep-14	Waste Disposal	1	YCDC
8	25-Oct-14	Waste Disposal	1	YCDC
9	7-Nov-14	Waste Disposal	1	YCDC
10	21-Nov-14	Waste Disposal	1	YCDC
11	1-Dec-14	Waste Disposal	2	YCDC
12	6-Dec-14	Waste Disposal (Sewage)	1	YCDC
13	24-Jan-15	Waste Disposal	2	YCDC
14	27-Jan-15	Waste Disposal	1	YCDC
15	24-Feb-15	Waste Disposal (Sewage)	1	YCDC
16	14-Mar-15	Waste Disposal	1	YCDC
17	20-Mar-15	Waste Disposal	1	YCDC
18	5-May-15	Waste Disposal	1	YCDC
19	9-May-15	Waste Disposal (Sewage)	2	YCDC
20	13-May-15	Waste Disposal	1	YCDC
21	18-May-15	Waste Disposal (Sewage)	2	YCDC
22	19-Jun-15	Waste Disposal	5	YCDC
23	1-Aug-15	Waste Disposal	6	YCDC
24	22-Sep-15	Waste Disposal	5	YCDC
25	21-Nov-15	Waste Disposal	5	YCDC
26	4-Dec-15	Waste Disposal (Sewage)	3	YCDC
27	22-Feb-16	Waste Disposal	6	YCDC
28	11-Mar-16	Waste Disposal (Sewage Damage Pipe)	10	YCDC
29	6-Apr-16	Waste Disposal	5	YCDC
30	29-Jul-16	Waste Disposal	6	YCDC
31	3-Nov-16	Waste Disposal	6	YCDC
32	6-Jan-17	Waste Disposal (Sewage)	3	YCDC
HILAWA DEL	29-Jan-17	Waste Disposal	5	YCDC
MJTD	Total		90	

ငွေလက်ခံ/ထုတ်ပေးပြေစာ

ထုတ်ပေးသည့်အကြောင်းအရာ ၊. မာရ မာရာပါဝနယ် စမီးမြေးမေးနှင့် စီး . Wast. Disposal. Charges .. (3.times . x 35,000.)

ထုတ်ပေးသည့်ရက်စွဲ၊

ထုတ်ပေးသူ တြေ

အမည် ၊...Hwe. Noung. Nyun!..... အမှတ် esqb/gps 1. Penta. Oceps. Construction co., led.

1. TSEZ. Project

လက်ခံသူ (ကိုယ်စား)

အမည် ၊ စုံ ဦးစီးမှူး (သန့်) အမှတ် မြန်တို့စည်းစဉ်သာယာအရအဖွဲ့ * * * * နေရပ်/ဌာန၊.. ဆုႏ္ျင့မြို့......

1. .99.421088719....

KO Kyans Sou Moe (Thankyin, YCOC)

မြို့နယ်စည်ပင်သာယာရေးအဖွဲ့ ကျောက်တန်းမြို့ ငွေလွှဲပြောင်း/လက်ခံပြေစာ

29.1.201

ား လွှဲပြောင်းပေးသည့်ငွေ(စာဖြင့်) တမ်ားသိုင်း ခြောက်သည် —
ျားလွှဲပြောင်းပေးသည့်ငွေ(ဂဏန်းဖြင့်) - သြတ္တတ ည် (
၃။ လွှဲပြောင်းပေးသည့်အကြောင်းအရာ -စလာမ်ွဲ့ ဒေ ာမ်ွက် -သာ၊ စ်' ယာမြာ နဲ
၄။ လွှဲပြောင်းပေးသည့်ရက်စွဲ
၅။ အထက်ဖော်ပြပါငွေကျပ်(၁၆ဝဝဝ) ဘား လက်ခံရရှိပါကြောင်းအောက်တွင်လက်မှတ်
ရေးထိုးပါသည်-
laur - Aug

လွှဲပြောင်းပေးသူ အမည်း ကျောင်းမြာ : ရာထူး နောင် ကျောင်းမြာ :

လွှဲပြောင်းလက်ခံသူ

အမည်၊ ၆၅က ၉နှန်ကျ

36001 22m0] -

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

General Waste Disposal Record

(Admin Complex Compound- October 2016 to March 2017)

Waste Disposal Record

Location
Disposal Site

: Admin Complex Compound (Trash Room) : Golden DOWA Eco-system Myanmar Co.,Ltd

Type of Waste

: Waste from common area of Thilawa SEZ and Admin complex compound

No	Year	Month	Date	Waste Disposal Time	Weight(Kg)	Total Weight/month
1	2016	March	14-Mar-16	1	320	320
2	2016	April	7-Apr-16	1	600	600
3	2016	June	29-Jun-16	1	1380	1380
4	2016	July	28-Jul-16	1	1000	1000
5	2016	August	31-Aug-16	1	1220	1220
6	2016	October	3-Oct-16	1	1160	2780
7	2016	October	25-Oct-16	1	1620	2/80
8	2016	November	30-Nov-16	1	1120	1120
9	2017	January	5-Jan-17	1	1060	1060
10	2017	February	9-Feb-17	1	680	1440
11	2017	February	10-Feb-17	1	760	1440
12	2017	March	16-Mar-17	1	960	1600
13	2017	March	17-Mar-17	1	720	1680
				 		
			+			
_						
					· v	
						AWA III
						THILAWADA
						3/1/2
						& TATAL S

- 43	11/2					
1		Manife	est	E-Sli	p	*Waste service companyto Waste Generator
ae of iss	UEnce	(Day Month, Yo	D. 2016		T	(Name&Sign) MyOMI- Their
Number issume	~-	9999	1610 000)2	Issuer	13.10.1c
Contract	ors	W	aste generator	Transportati	ion company	Waste service company
Company l	Name	LM.	T3	6B	M	REM
Tel						
		Kind		Name		Style of packing
	I2No	1-I lazardous	General	Waste		
Waste	□Haz	ardous	Qua	ntity(Unit)		Remark
	□Oth	eris	1160k	9		
Customer	code	-	1001	Waste Profil	e code	A∞ı
Th	BC0		PIC(Name&Si	gn)		Date of Completion
Transportat	ion cor	npany /	isian) Im Min O	194-3422	(Day Month, 1	Date of Completion Year) 10 20 6 500 Year) Year)
Waste serv	ice con		22 Wiri Go	Na Hlakeg	80	10:00 8016 (8/8 10/1d)
			Designed by GOLDEN D	OWA ECO-SYSTEM	A MYANMA	RCO_LID. ROUNDING

	4	Mai	nifest	C-Slij	p	*Transpiration company to Waste Generator
rate of iss		(Day Mous	h, Year) 5 . 10 . 2016		Issuer	(Name asign) My China Their
Number	2.5	q	999 1610 00	23		
Contract	ors		Waste generator	Transportati	on compan	y Waste service company
Company!	Name		ne Japan Thilaun	Cat	F13	GEM.
Tel						
		Kind		Name		Style of packing
	ØNo.	barseH-n	Crenesal	iclaric		
Waste	□Ha	zardous	Qua	ntity(Unit)		Remark
	□Oti	hers	16801	kg		
Customer	r code		0001	Waste Profi	le codc	Aool
T	race	1	PIC(Name&Si	ign)		Date of Completion
	1,000.00		Name&Sign)	West of the second		1 FC 5 C 1 C
Waste ser	vice eo		Name&Sign)	QQ Hilling	(Day Month	Year)
			Designed by GOI DEN I	OWA ECO-SYSTE	M MYANM	IAR CO., LTD.

Vasto Typnnina Devielopin Sind Hazardous	ent Co Hd.	Section 10 to 10 to 10 to	n company	Waste service company Golden Donia Ec System Myannal
Wasto Typnnina Devielopin Sind Hazardous	generator Impara Thilauv and Co Idd.	Transportation Golden Do	ma Eco.	Golden Donia Ec
Typnnina Devielopm Kind Hazardous	Inpan Thilaux ent Co Hd.	Golden Do	ma Eco.	Golden Donia Ec
Devielorm Gind Hazardous	ent Co Hd.	eGolden Do Byston: My	annure.	Byston Doma Ec Byston Myanmal
Hazardous		Literature and		AND THE RESIDENCE OF THE PARTY
Hazardous		Committee of the Commit		Style of packing
		Name	37 7 7	SQN OF PROBLEM
	General.	lliastc	2	
rdous	Qu	antity(Unit)		Remark
0C)0	1180kg	Waste Profil	e code	A 001
	PIC(Name&S	Sign)		Date of Completion
pany (Name&Si	Roko Au	ng 312.889 Own Holing	30 (Day March, Yan	11.16
	(Name&Sig	pany (Name&Sign) (Name&Sign) (Name&Sign) (Name&Sign) (Name&Sign)	PIC(Name&Sign) Planty Planty	PIC(Name& Sign) (Name&Sign) (Name&Sign) (Day Month, Year) A On Roko A WA 312.4846 (Name&Sign) (Name&Sign)

, N. Asset	-14	Manife	st	C-Sli _l	p	Transpiration company to Waste Generator
ate of issu	ance	(Day Month, Yes	F109 not		Issuer	Myo Min Troin
Number		વવવવ	1701 0005			Waste service company
Contracto	_	W	aste generator	Transportati	on company	
Company N		,	n Izqaa Development	GEM		CHEN
Tel			<u> </u>	Name		Style of packing
Waste	Он	Kind on-Hazardous azardous thers	012110030	Made untity(Unit)		Remark
Custome	r code	00	001	Waste Pro	file code	12 001
Transport		ompany (Nam	PIC(Name&S	His	(Day Month,	1 1 117

		Manife	est	C-Sli	p	*Transpiration company to Waste Generator
Date of iss	uance	(Day Month, Ye	Fib iclt	2.5%	Issuer	(Name&Sign)
Number issuand		9999	1702 OC	OIZ SIC	13340	
Contract	ors	W	aste generator	Transportati	ion company	Waste service company
Company l	Name	Developm	Topin In low	GEM		GEM
Tel						
		Kind		Name		Style of packing
-	□No	n-Hazardous	General	Charle		
Waste	□Ha	zardous	Quar	ntity(Unit)		Remark
	Out	iers	680 kg			
Customer	code	00	100	Waste Profil	e code	Aool
Tr	ace		PIC(Name&Si	gn)	illin and annual	Date of Completion
Transportat	ion cor	npany Ky	ant Tun Mya	Z	(Day Month,)	9.2-2017
Waste serv	ice con	npany (Names	(misis)	De Horney	(Day Month, 3	9- 2-17
15350		TO MAY.	Designed by GOLDEN DO	OWA ECO-SYSTEM	MYANMA	R CO., LTD.

el pe		Manife	st		C-SI	ip	*Transpiration company to	Waste Generator
Date of iss	vance	(Day Month, Ye	Feb Ro	17 +		Issuer	(Name&Sign)	
Number issuance		9999	SOFI	0014	E CANADA TANADA	Issuer	For Min	المساعدة
Contract	tors	W.	aste generator		Fransportat	ion company	Waste service	company
Company	Name	Myphicat Devilopi	Jopan That	rina GI	E M		GEM	
Tel		**						
		Kind		Name	****		Style of pack	ing
	No	n-Hazardous	Genera	1 wa	ste			
Waste	□Ha	zardous		Quantity U1	nit)		Remark	
8.	Oti	ners	760 KG)				
Customer	code	00	001		Vaste Profi	le code	A001	
Ti	race	WIII - 1	PIC(Nam	e&Sign)	V	J	Date of Completion)
ONE STATE OF THE S	*	npany (Name&	ok feach	Jr. 67	Ziv 10.2	(Day Month,	10.2.20	17

4		Manif	est	_ C-SI	ip	*Transpiration company to Waste Generator
Date of is	suance	(Day Month, Y	Mar 2017			(Numersign) Myo Min The a
Numbe issua	STOP SHAPE	1119	1703 0030		lasuer	Tig. 3.17
Contra	ctors	W.	aste generator	Transportat	ion company	Waste service company
Company	Name		ian Japan Development LH	GEN	Tee T	GEM
Tel	Manage.		177			
100		Kind		Vame		Style of packing
		1-Hazardous	Gionesal	waste		
Waste	□Haz	ardous	/ Quan	tity(Unit)		Remark
	Oth	ers	960 kg	Mega		
Customer	code	OC	201	Waste Profile	code	1001
- T	race		PIC(Name&Sign	n)		Date of Completion
Cransportal	ion com	pany Name&	alas Ten My CRIER 96 U	160	Day Month, Yo	
Waste serv	ice com	(Name&	Sign) Len Oc		Day Moidb, Ye	3, 3, 19
	1. 1	A. S	Designed by GOLDEN DOV	WA ECO-SYSTEM	MYANMAR	CO. LTD

		Manife	281	C-Sli	p	*Transpiration company to Waste Generator
⊥)ate of is:	suance	(Day Menth, Ye	m) March - 2017		Issuer	(Name&Sign) Myo Min Tho:
Numbe issuan	17	9999	1703 0053		1554ICI	(17.17)
Coutrac	tors		aste generator	Transportat	ion compan	y Waste service company
Company	Name		n Japan Development	GE	М	CIEM
Tel				T.	***************************************	
		Kind		Name	CONTRACTOR OF THE	Style of packing
	ØN₀	n-Hazandous	Genew	il wrste		
Waste	□Ha	zardous	. Qua	ntity(Unit)		Remark
		hers	7201	9 04) 	
Custome	r code	00	101	Waste Profi	le orde	8 Apol
1	race		PIC(Name&Si	6u)	T	Date of Completion
Fransport	ation co	mpany (Name	jour for My	a 7.	1	III. C. 17
Waste ser		(Name	Contraction of the	al Horo	(Day Month,	Year)
			Designed by GOLDEN D	OWATCO-SYSTE	MMYANAG	

Thilawa Special Economic Zone (Zone A) **Development Project (Operation Phase)**

Appendix

Sewage Treatment Plant Monitoring Record (October 2016 to March 2017)

Monitoring Pa	rameters R	Result for \$1	TP(Phase-2)															cer														
Month	Date	рН	ORP	DO	EC	TDS	Turbidity	COD	Temp	BOD	T-Coli	T-N	т.р	O&G	ss	Cyanide	Chromium	Arsenic	Mercury	Cadmium	Selenium	Lead	Color	Odor	Zinc	Copper	Barium	Nickel	Sulphide	Free Chlorine	Formal-	Phenols
			-			arameters	1	1	1				Parameters			onthly Paramete		I	orodry	- Junianii	Caronidilli	Leau	GUIUI	Odol	ZIIIC	Copper	Januill	- Inchell	Salpinde	Chlorine	dehyde	THEHOIS
Standa	ırd	6.5-6.5	121	2		Max 2,000		Max 300	Mex 35 °C	Max 200	Max 400	Max 80		Max 5	Max 200	Max 0.2	Max 0,5	Max 0.25	Max 0.005	Max 0.03	Max 0.02	Max 0.2	150	150	Max 6	Mex 1	Max 1	Max 0.2	Max 1	Max 1	Max 1	Max 1
Oct 1	Oct-18				Carlo San	ppm	-	-	°C	ppm	MPN/100ml	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Co-Pt	Co-Pt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Oct 3- Oct 4- Oct 5- Oct 6- Oct 7-	Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16	7.99 8.10 7.22 7.46 7.42	321.5 327.2 189.3 354.3 384.5	0.42 0.46 0.55 0.61 0.55	656 706 733 742 637	328 354 367 371 318	19.40 188.00 15.40 62.30 17.90	3.70 12.90 5.60	29.60 30.03 29.59 29.52 29.57	0.5	etf0000	6.8	0.690	3.27	114	0.042	0.056	≤ 0.05	≤ 0,00054	≤ 0.00086	≤ 0.075	s 0.04	9.42 (TCU)	4 (TON)	0.102	≤ 0.00355	0.06	0.062	0.101	0.7	0.011	0.008
Oct 9-1 Oct 10- Oct 11- Oct 12- Oct 13- Oct 14-	Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16	8.20 7.74 7.67 7.46 8.00	350 418.1 398.4 370.9 357.6	0.37	973 844 620 381 1025.00	487 423 310 190 512	31.60 192.00 139.00 36.50 77.80	30.10 26.30 14.30	29.69 29.32 29.53 29.30 29.48	10.6	=160000	6.6	0.273	<3,1	16																	
Oct 17- Oct 15- Oct 19- Oct 20- Oct 21- Oct 22-	Oct-16	7.68 7.75 8.20 6.06 7.45	271.5 338.6 275.2 231.6 189.4	0.68 0.42 0.17	606 649 738 625 755	302 325 268 312 378	13,30 322,00 20,80		29.59 29.43 29.53	2.6	2180000	92	0.904	< 3,1	564																	
Oct 25- Oct 26- Oct 27- Oct 28- Oct 28-	Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16	7,72 7,58 7,70 7,55 7,60	136.1 144.5 252.1 160.7 380.4	0.31 0.32 0.36	612 587 623 674 587	305 292 411 335 293	30,90 18,10 38,50 19,70 33,50	74,00 21,80	29.37 29.44 29.43	20.2	2 HEDDOO.	8.5	0.368	/ (tal W	24																	
Nov 1-h Nov 2-h Nov 3-h Nov 4-h	Oct-16 	7.63 7.44 8.48 7.52 7.75	293.7 208.4 313.5 208.7 193.6	0.24	563 683 694 698 774	281 342 347 347 387	16.70 48.80 18.90 20.80 11.70	23,80 91,00 76.00	29.39 29.42 29.40	26.1	z le XXX	9,6	0,301	4.36	22	0.017	≤ 0.002	≤0.01	≤0.00064	≤0.001	≤0.01	≤0.002	27 24	17	0.06	≤0,002	0.04	0.066	0.013	0.3	0.088	0.002
Nov 7-N Nov 8-N Nov 9-N Nov 10-I Nov 11-I	Nov-16	7.87 7.53 7.23 6.82 7.49	390 138.4 189.1 425.4 186.5	0.48	690 701 723 632 571	345 350 361 316 286	14.20 14.40 23.10 23.20 22.40	19,40 251.00 114.00	29.53 29.56 29.47	44.3	90000	17.4	0.624	92.5	20																	
Nov 15-1 Nov 16-1 Nov 17-1 Nov 18-1	Nov-16 Nov-16 Nov-16 Nov-16	7.60 8.14 8.02	227.2 158.5	0.42	590 893 794 777	296 447 396 386	23.60 31.20 70.10 26.10	95.00 49.00	29.40 29.52	33.5	≥160000 <u></u>	11.3	0.865	1161	44				(d)													
Nov 21-1 Nov 22-1 Nov 23-1	Nov-16 Nov-16 Nov-16 Nov-16 Nov-16	7.61 7.85 0.12 8.07	439.4 294.5 225.4 225.7		564 746 634 553.0	323	45.40			42.5	£\8000	16.7	-1.41	3.45	.26																	
Nov 29-N Nov 30-N Dec 1-D Dec 2-D Dec 3-D Dec 4-D	lov-16 lov-16 loc-16 loc-16 loc-16	7.30 7.33 8.37 8.30	245.5 257.9	0.48 0.68 0.75 1.21	1321 948	282 354	21.40	88.00	29.65 29.64	27.1	300	14.1	0.323	1/22	12																	
Dec 7-D Dec 8-D Dec 9-D Dec 10-C Dec 11-D	ec-16 ec-16 ec-16 ec-16	7.99	248.5 310.7 215 231.1	0.73 0.92 0.84 0.72	757 677 862 1020 770		7.40 54.50 170.0 46.0	102.00 88.00 198.00	29.56 29.47	45,5	3 (6P000)	20.4	1.144	1172	46	0.046	±0.002	≤0.01	≤0.00054	⊴0,001	⊴0.01	⊴0.002	23.15	17	0.06	±0.002	0.034	0.052	0.034	0.3	0.123	0.005
Dec 14-D Dec 15-C Dec 16-D Dec 17-D Dec 18-D	lec-16 lec-16 lec-16 lec-16 lec-16	8.32 8.34 1.30 9.13	221.3 182.8 219 168.5	0.63 0.57 0.59 0.65			209.00	132.00 80.40	29.54 29.77 29.60	24.91	2160300	24.9	1.89	3.64	26																	
Dec 20-D Dec 21-D	ec-16 ec-16 ec-16 ec-16 ec-16	8.15 8.15 7.94 8.01		0.43 0.60 0.79 0.65	597 769 874 1243 787	298 385 437 622 303	25.30 28.90 23.70 35.70 28.60	63.00 68.00 84.00 30.00	29.38 29.26 29.39 29.27	28.3	>\8000	20.3	1.86	4	10																	
Dec 27-D Dec 28-D Dec 20-D Dec 30-D Dec 31-D Jan 1-1	ec-16 ec-16 ec-16 ec-16 ec-16	8.44 8.29 6.55	277.4	0.53 0.41 0.25	562		56.80 28.20	63,00 149,00 18,00	29 29 29 52 29 20	78.6	>180000	12	0.267	u u	46																	
Jan 3-Jan Jan 5-Jan Jan 6-Jan Jan 8-Jan 8-Jan	m-17 m-17 m-17 m-17	7.87 6.1 7.32	319.6 394.8	0.29 0 0.33	859 697	432 349	17.6 29.6	26.6 25.1	29.38 28.44	(6.6	= (00000	14.4	1	0.85	34	0.02	s0.002	0.012	s0.00064	\$0.001	\$0.01	s0.002	15.91	4	0.08	≤0.002	0.036	0.07	0.03	0.6	0.085	10
Jan 10-Ja Jan 11-Ja	an-17 an-17 an-17 an-17	7.4 6.92 7.23 7.38	220.8 260.1 234.3 253.2 217.6	0 1.33 0.47 0.03	879 1019 1761 1454 910	448 509 882 730 455	48.3 42.6 21.8 16.4	42 30 85 38	28.77 29.1	14,5	=180000I	8	0.256	<3.1	38															13	Mary	

I		P(Phase-2)	454.0				JUS T								E 172.750	OIL JIII	Inlet		23115	TELL THE	N SELV	15: 17:11	EST FIL	Y -	975= == N.					
Date	pН	ORP	DO	EC	TDS	Turbklity	COD	Temp	BOD	T-Coli	T-N	T-P	O&G	SS	Cyanide	Chromium	Arsenic	Mercury	Cadmium	Selenium	Lead	Color	Odor	Zinc	Соррег	Barkum	Nickel	Sulphide	Free Chlorine	Formal- dehyde
				Daily Par	rameters						Weekly P	arameters			onthly Paramet	ers														
dintid	6.5-8.5	ISS E	100	26	Max 2,000		Max 300		Max 200	Max 400	Max 00		Max 5	Max 200	Max 0.2	Max 0.5	Macx 0.25	Max 0.005	Max 0.03	Max 0.02	Max 0.2	150	150	Max 5	Max 1	Max 1	Max 0,2	Mixel	Max 1	Max 1
17-Jan-17	0.45	209.9	0.05	4400	ppm	40.6	00	*C	ppm	MPN/100ml	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Co-Pt	Co-Pt	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Jan-17	8.45 6.74	208.8 312.1	2.25 3.57	1422 542	712 272	42.6 22.1	96	28.95 29.04	1.8	290000	7.1	0.506		20																
Jan-17 Jan-17	7.75	282.1	3.31	986 896	493 448	39.8 27.7	51 36	29.07 29.01																						
Jan-17 Jan-17													01.0					4 - 4 - 4		1/2 1/2				Charles and	2 10 110	Market 15	and the	III SICO		
Jan-17	8.04	196.4	3.26	910	448	15.5	32.4	29.12																						
Jan-17 Jan-17	8.37	202.6	3.24 2.77	1678 692	839 347	34.1 25.4	16.9	29.4	2,1	- 9000000	11.2	0.911	42	48																
lan-17	8.35 8.18	236.5 229.1	2.44	1767 675	887 338	16.9 27	21.5	29.12														-								
ian-17	A PARTY	- Marine	525				10000								1000			1000		4000000				No. 1 Acres						
lan-17	8.39	167.8	3.72	592	296	20	15.9					10000																		
eb-17	8.29	219.6	3.99	561 864	280 432	28.8	18.6	29.13	5.1	190000	10.9	0.605	5.46	30	0.02	s0.002	0.012	≤0.0009	≤0.001	≤0.01	≤0.002	12.5	1.4	0.08	≤0.002	0.038	0.018	0.01	0.2	0.099
eb-17	7.79	301.6 178.2	2.66	1017	510	160	21.3	29.02	5.1	7.5000	10.8	0,000		50	0,02	30.002	0.012	20.0000	20,001	30,01	30.002	12.0	1.4	0.00	30.00	Visit				
b-17 b-17	244	122.4	2.66	1089	549	53.1	121	29.05					TAKE SECTION				The second			O SHILLING	N. School E.	Total Control of the last	0.2	10000	and the same				-	
>17			254	4453	F70	404	110	200.44														Section 1								
b-17 b-17	9.54	66.7 130.5	3.54 2.86	1157 1824	578 390	121 40.2	91																							
>17 >17	7.74	146.5 286.2	2.75 4.08	997 818	499	57.9 5.5	238 114	29.02	46.6	-10,000	24.5	1.79	76.50	48																1
b-17 b-17	8.79		3.6	1044	521	51.1	114	28.94					A STREET				eVI V			THE RESERVE				10000			CONTRACTOR OF THE PERSON		Name and Address of the Owner, where	
5-17				-	1000			2000	line in			DE VENTON			70 200		IX. IV		200			24.5	District of	NAME OF STREET		N Contra				
-17	8.45 8.23	150.5 77.3	5.3 3.83	711 680	355 340 540	28 32.2	33	29.01						10/40					THE R								THE PARTY		Marie 1	
17 17	8.5	236.4 286.6	3.93 5.04	1048 796	540 398	41 35.1	54 43	29.21	11.5	:-100000	15.4	0.927	11.00	42																
17	8.37	145	3.17	828	144	14.4											-				-							Silver and the		
17																						1000		4 6						
17	8.67	76.4	3.94 4.08	838 755	419 378	45.4 34.8	98	29.08										42-												
17	8.43 8.34	228.5 283.4	4.82 4.11	928 782	464 391	8.3 25.3	34 34	29.09 29.05	8.7	> 660000	13.7	0.359	3.34	12	100				- 0 1								-			
17	8.58	174	4.11	876	438	40.3	53	29.23					4 17		1000		100		1000			20 SA								
17	na isi			0.00				Lyo					7														and the same of			
17	8.25 8.41	271.3 67	4.51	763 665	382 332	16.2 48.5	33	29.18		Salt Sal												EA LUNI		V 1						
7	9.71	202.5	3.81	947	474	25.7	53	29.00	13.5	> 900000	20.6	1.43	4.73	8	0.016	≤ 0.002	0.014	≤ 0.002	≤ 0.001	≤ 0.01	≤ 0.002	20.77	2	0.036	≤ 0.002	0.008	0.01	0.037	0.2	0.1
17	8.63	185.6	4.89	1041	521	36.4	75	29.25								315	100			26.50						EVILLE C	ATTITION.		AND DESCRIPTION OF THE PERSON	
17													THE ST				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					XI			200 VA		200			
17	8.79 8.39	184.8	4.08 4.46	1169 640	582 320	38.6	125	29.25 29.18																						
17 17	8,58	300 314.4	4.20	1203 847	602 424	31.1	86 33	29.5	34.3	> 16/0000	21.2	1.49	5,914	42	14.4.4															10 150
17		295.4	2.85	965	485	155	34												TEN CE	- //	5.70			TO TO THE			-			
-17				7																										
1-17	7.81 8.35	133.7	6.47 5.7	520 523	410 262	15.5	31	30.01 29.69		1000			1117				-					D Fr F								
r-17	8.38	255.7 342.6	4.04 3.44	906 489	453 235	30.5 15.22	131		41.5	> lawyiri	12	0.662	4.0	44																
-17	9,94	182.5	4.01	971	484			30.15		70 Y					6.00												CONTRACT.			
17				V.	- I - was									17 5-1																100
r-17	B.14	203 270.2	4.39	1004 761	499 381	759 30.9	96	29.95 30.05									100			1										III SII
r-17	8.73	250.3	3.51 3.72	1171	587 491	33.9	198 31	30.13	42.3	>180000	15	0.659	20.64	58										Name of Street						
1-17	8.82	250.4	4.07	959	482	57.1	23	30 29.79						VIII II					25-210	218.0		W. T.			71 0000				-10	107
0-17		270.2 250.3 314.5 250.4 250.4 250.3 3004 275.3						THE PARTY NAMED IN												7 2										
1767	8.85	250	4.21	864	482	35,6	51	29.75									UNIVERSITY					4					1 4 8			
ar-17	8.63	265.3	4.35	1121	456	33.7 30.5 58.3	93 126 17	30.17 29.81 29.95	21.8	×100000	31	1,98	46	24											47.4-8		C. C.		100	18
nair 17	8.73	275.3	4.35 3.75 4.08	1121 964 1120	520	58.3	17	29.95																					EL TUL	
4547	ED:																													

Monitoring Parameters Result for STP(Phaso-2)

Part	Monitorii	ng Parameters	Resun for 511	r(Phaso-2)	ONLY PARTY		7.0	11111		No. of Lot	Ser Marie		THE RES	and the same		7 1-1-1		Outlet										_					
Column C	Month	Date	рН	ORP	DO	EC	TDS	Turbidity	COD	Temp	BOD	T-Coli	T-N	T-P	O&G	SS	Cyanide	Chromium	Arsenic	Mercury	Cadmium	Selenium	Lead	Color	Odor	Zinc	Copper	Barium	Nickel	Sulphide	Free	Formal	Phenols
The column				•	*	Daily P	arameters		-				Weekly P	arameters	F					-	-							_			Chlorine	dehyde	
			5.0 - 9.0		*		Max 2,000		Max 60	Max 40	Max 200	Max 400	Max 80	Max 2	Max 5	Max 30	Max 0.2	Max 0.5	Max 0.25	Max 0.005	Max 0,03	Max 0.02	Max 0.2	1.5	11-5-11	Max 5	Max 1	Max 1	Max 0.2	Max 1	Max 1	Max 1	Max 1
Part						•	ppm	•	ppm	°C	ppm	MNP/100ml	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm		(+)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Column	Oct	2-Oct-16	7.05	200.0	0.40	710	470		410	4000		TO UT UP	THE RES									E O D											
Part																																	
State Stat											0,5	<2	6,9	0.153	<3.1	4	0,002	0.044	≤ 0,05	≤ 0.00054	≤0,00086	≤ 0.075	≤ 0,04	2.01 (TCU)	1 (TON)	0.06	≤ 0,00355	0.052	0.022	≤ 0,005	0.1	0.146	≤ 0.002
	Oct	7-Ocl-16					339																										
Part	Oct	9-Oct-16							DE LA LIE					MILE																			
Column						_																											
State Stat											0	13	8.9	0.143	<3_1	12						-											
State Stat	Oct	14-Oct-16													70.1			-															
State Stat	Oct	16-Oct-16																	250					2 7 6						X			
Part	Oct																																
State Stat											0	<2	7.7	0.071	<3.1	4																	
State Stat	Oct	21-Oct-16					321	Ö			(X						1.4.	4															
Column C	Oct	23-Oct-16			De et la constant	7 100																				100	N.E.			E 3111			
Column																												15					
Column							-	0			0	<2	7.8	0.087	<3.1	4																	
Column C	Oct	28-Oct-16						0.4					-				100												k, be				
Column C	Oct	30-Oct-16				111.5			أتسما					NU N																			
Column C	Nov																- 1						Establish State										
Column C	Nov	2-Nov-16	8.11	521.5	0.46	563	281	0	<0.7	29.48	Q	≪2	6	0.086	< 3.1	2	0,002	≤0.002	≤0.01	≤0,00054	≤0.001	≤0.01	≤0.002	1.5	17	0.02	≤0.002	0,022	≤0.002	0,006	0.2	0.012	0.002
1	Nov	4-Nov-16														- 1		1-7-	115115					17.0									
Column C	Nov	6-Nov-15															-	7	The second														
Column March Mar	Nov	8-Nov-16	8.12												11 11																		
Column C	Nov Nov				0.42				8.0	29.54	0	<2	7.5	0.081	0.1	16																E-1-10	
The content of the	Nov	11-Nov-16										0.0									INVE N				-								
The column	Nov	13-Nov-18								31 =					di I ayala																		
Column C	The second second second		7.66	356.2	0.47	660	330	0	2.4	29.85		ووالمتالة			The Real Property lies													1					
Column C	Nov										0	<2	6.3	< 0.05	< 3.1	6		100													V.		
The column	Nov	18-Nov-16														10								A Series			HIATIV						
Column C	Nov	20-140/-15																															
Column C	Nov																																2-101
Column C	Nov					696		0			0	Q	9.6	< 0.06	< 3.1	2							0.00									8 8	
Column C	Nov	25-Nov-16	8.33	169.2	0.33	900	350	0	2.9	28 12					1					I PORT	Section for												
Dec. 1,000	Nov	27-Nov-18				0.00																											
100 100 100 100 100 100 100 100 100 100								1.1							-						-1								2.1.3				
Column C								10.1		29.07	0	< 2	8.9	< 0.05	< 3.1	2																	
Dec. 1-1	Dec	2-Dec-16			1.21	732																			100 100		310 5						
	Dec	4-Dec-16																															
Dec. About	Dec	6-Dec-16	7.56																														
Dec. 10-00-08 5.00 5.0	Dec Dec	7-Dec-16 8-Dec-16						0			0	<2	15	< 0.05	< 3.1	2	0,09	≤0,002	≤0,01	≤0,00054	⊴0,001	⊴0,01	≤0.002	5.7	1	0.04	≤0,002	0.074	0.096	< 0.005	0.7	0.072	0.005
Color Colo	Dec	9-Dec-16						0								100	10/15	20.00		H. D. J.													
100-00-00-00-00-00-00-00-00-00-00-00-00-	Dec	11-Dec-10								1009				T J.						C 52 W													
100-00-00-00-00-00-00-00-00-00-00-00-00-	Dec	12-Dec-16	8.40	229.3	0.52	948	398	0	3.1	28.82	0	<2	13.4	< 0.05	< 3.1	8																	
100-00-00-00-00-00-00-00-00-00-00-00-00-	Dec Dec	14-Dec-16 15-Dec-16	8.23		0.58													100000		X													
Dec 10-bes 16 16 16 16 16 16 16 1	Dec	16-Dec-16																							Harrison.			- W					
Dec 27-Doc-16 683 4445 038 504 467 0 27 20.00 0 0 1.8 15.1 0.00 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec	18-Dec-16	200	154.2	0.44	900	450		2.7	20.74								787 00			1 1 1 1						2 10 12		The Holl				
Dec 27-Doc-16 683 4445 038 504 467 0 27 20.00 0 0 1.8 15.1 0.00 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec	20-Dec-16	8.63	185.8	0.68	844	422		7.4	28.76																							
Dec 27-Doc-16 683 4445 038 504 467 0 27 20.00 0 0 1.8 15.1 0.00 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 1.8 15.1 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec			212.9				7.8			0	<1.8	12.5	< 0.05	<3.1	2	follo	1 8 0								93/11							
Dec 29-Dec-16 8.63 444.5 0.38 634.4 467 0 2.7 28.93	Dec	23-Dec-16	8.43	175.9	0.65	827	414	0	6.3								Say Said	24		7-6-3-6-0					TEXT -	V - EV					The state of		
Dec 27-Dec 16 8.61 224.9 0.48 1017 500 3.1 5 20.08	Dec	25-Dec-16	8.63	444.5	0.38	934	467	0	27	28 07							- 27								Sec. Sec.			7					
Dec 29-Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec 18 Dec	Dec	27-Dec-16	8.81	254.9	0.48	1017	509	3.1	5	29.08						17 75									2011	1		TV TV		20 51 11			N TOTAL
Dec 31-Dec-16	Dec	29-Dec-16									0	<1.8	15.1	<0.05	<3.1	4			471				IN THE RESERVE TO THE				0						
Sam 1-Ain-17 Ain 1-Ain-17 Ain 1-Ain-17 Ain-17 Ain 1-Ain-17 Ai	Dec	31-Dec-16	8.58	181.7	0.15	871	436	0	5.1	28,4						Time to				610				Name of the least							The same		
Jan 3-Jan-17 7.47 310.6 0.25 866 433 0 5.3 28.78 1.3 <1.8 17.5 0.002 50.01 50.002 50.002 50.01 50.002 50.	Jan	1-Jun-17	7.72	243.9	0.00	842	421	0	4.7	28.5															N 701				- 111	-			
Jan 6-Jan-17 6.85 232.7 0.00 902 401 15.1 13.2 28.02 Jan 6-Jan-17 7.44 317.4 0.39 812 406 0 40.7 27.86 Jan 7-Jan-17 8.11 209.9 0.34 820 410 0.1 3.3 28.82 Jan 10-Jan-17 8.93 244.9 0.00 821 410 65.1 1.6 28.73 Jan 11-Jan-17 7.86 824 1.56 824 412 0 3.3 28.94 11.1 13 13.3 0.062 Jan 12-Jan-17 7.89 231.8 0.00 838 420 0 8.5 27.21 Jan 13-Jan-17 7.85 189.4 0.26 835 417 0 4.8 27.02	Jan	3-Jan-17									1.3	<1.8	17.5	0.093	<3.1	(4)	0.004	≤0.002	≤0.01	≤0.00054	≤0.001	s0.01	s0.002	5.28	1	0.042	≤0.002	0.016	0.01	0.007	0.2	0.031	<0.002
Jan 9-Jan-17 8,11 209.9 0.34 820 410 0.1 3.3 26.82 Jan 10-Jan-17 8,93 244.9 0.00 821 410 0.1 1.8 26.73 Jan 11-Jan-17 7.80 231.8 0.60 838 420 0 8.5 27.21 Jan 13-Jan-17 7.85 189.4 0.26 835 417 0 4.6 27.02	Jan	5-Jan-17		232.7		802			13.2	28.02					luc .		OCT.	E VOLE	1			1						100		-	STATE OF THE PARTY OF		
Jan 9-Jan-17 8,11 209.9 0.34 820 410 0.1 3.3 26.62 Jan 10-Jan-17 5,82 294.4 1.56 624 412 0 3.3 26.94 Jan 11-Jan-17 5,82 294.4 1.56 624 412 0 3.3 26.94 11.1 13 13.3 0.062 3.1 26 Jan 12-Jan-17 7.59 231.8 0.60 838 420 0 8.5 27.21 Jan 13-Jan-17 7.86 189.4 0.26 835 417 0 4.6 27.02	Jan Jan		7,44	317.4	0.39	812	406	0	<0.7	27.86							3,00			200	100000					0200010		DESCRIPTION OF THE PERSON OF T				KHILAWAD	2
Jan 11-Jan-17 5.82 294.4 1.56 824 412 0 3.3 26.94 11.1 13 13.3 0.062 3.1 26 Jan 12-Jan-17 7.59 231.8 0.60 838 420 0 8.5 27.21 Jan 13-Jan-17 7.85 189.4 0.26 835 417 0 4.6 27.02	Jan	B-Jan-17	8.11	209.9	0.34	820	410	0.1	3.3	26.82				HIS (III)	1 . 6 . 1	II SALIE	OHA		ALC: EL		UA							إسبا			97		18
Jan 13-Jan-17 7.85 189.4 0.26 835 417 0 4.6 27.02	Jan	10-Jan-17	8.93	244.9	0.00	821	410	61.1	1.6	26.73	ar	45	42.9	D.OES	-01	200				-											3	MJTT	DE
- Am 14-Mo (1	Jan	12-Jun-17	7.59	231.8	0.60	838	420	0	8.5	27.21	11.1	13	10,0	0,062	9,1	26							107 5 1								3		
Jan 15-Jan 17	Jan 8	14-Jan-17	7.85	189.4	0.26	835	417	0	4.6	27.02						THE PARTY	And the same		No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of	THE RESERVE		I CONTRACTOR OF THE PARTY OF TH	84.5								7	Try - 17	A. C.
	Jan	15-Jan-17				Mary March		100					bo E							Maria 3		- S				2		-	12/2010		i Edini	C 18 18 18 18 18 18 18 18 18 18 18 18 18	THE PARTY

T	neters Result								THE STATE	# - 1 . K	- EXPL	BARAN		NAME AND	الإختاج	-1110	Outlet		JL = 1144		A HILLS				بالنجال	Cate MA		TEVAL)				
nth Dat	e	рН	ORP	DO	EC	TDS	Turbidity	COD	Temp	BOD	T-Coll	T-N	T-P	O&G	98	Cyanide	Chromlum	Arsenic	Mercury	Cadmium	Selenium	Lead	Color	Odor	Zinc	Copper	Barlum	Nickel	Sulphide	Free Chlorine	Formal- dehyde	Phenols
1 1 No. 2 No. 4 March		Name (Daily P	arameters		The second	W100700	W11-1204			Parameters	N			W-VAIR	all control	100 CONT.	1 1000000	TANDERS NO.	W///W/S	N	fonthly Paramete				- March 20	I - Description	Here's	The Control of the Co	T Week
Standard		0.90	- 8	- 8:	11 18-	Max 2,000		Max 60	*C	Max 200 ppm	MNP/100ml	ppm	Max 2	Max 5	Max 30	Mar 0.2 ppm	Max 0.5 ppm	Max 0.25 ppm	Max 0.005 ppm	ppm	Max 0,02 ppm	ppm			Max 5	ppm	ppm	ppm	Max 1	ppm ppm	ppm	Max 1
	-	7.72	255.€	4.68	862	9pm 431	0	9pm 4.8	26,68	ppm	MINES TOUTH	pyill	ppm	ppm	ppm	ppin	ppm	ppiii	ppiii	Ppin	PPIII	Ppiii			bbiii	ppiii	Phili	PP····	Pr.···	er	ee	******
Jan 16-Jan Jan 17-Jan Jan 18-Jan	F17	7.91	240.4 242.4	4.87	873 916	437 458	0.4	3.7	27.12 27.18	0		16	0.054	<3.1	2																	
Jan 19-Jan	r-17	7.76	191	4.75	927	464	0	5.2	27.09			10	0,007	78.1																		
Jan 20-Jan Jan 21-Jan	-17	7.9	194.9	4.81	936	468	8,8	10.6	27 08	SVENI								2500	4-11-2		- COURT		1032	WCC 1	23		989				CHANGE LA	
Jan 22-Jar Jan 23-Jar	r-17	8.53	135.8	4.63	924	462	0	4.4	27.3				(1)		-		10400	11 2 2 2 2 2 2			-		-									
Jan 24-Jan Jan 25-Jan		8.65 6.84	177.9 172.5	4.87 5.02	933 973	466 486	0	6.1	27.73	0	<1.8	15.8	0.094	₹3.1	10																	
Jan 25-Jan Jan 27-Jan		8.56 8.79	183.3 208.6	6.23 4.33	983	494 499	0	6.2 7.7	27.94 27.91																							
Jan 26-Jan Jan 29-Jan	-17	8 19						100					10 16																			No. of Lot
Jan 30-Jan	+17	8.77	137.7	5.11	1071	536 547	0	7.4	27.81 27.4																							
Jan 31-Jan Feb 1-Feb		8.76 8.15	201.7 314.2	5.18	1094	518	0.2	12	27.79	0	<1.8	16.5	0.075	<3.1	4	0.004	≤0.002	≤0.01	≤0.0009	≤0.001	≤0.01	≤0.002	1.72	1	0.574	0.036	0.014	0.07	<0.005	0.3	0.009	<0.002
Feb 2-Feb Feb 3-Feb		7.77 8.48	204.9 161.7	5.38 4.75	973 991	486 496	25.4 0.2	11.3 6.4	27,91 27,89																							
Feb 4-Feb Feb 5-Feb	-17		10717				THE PERSON NAMED IN						02000	CONTRACT OF THE PARTY OF THE PA		12 11 11			ATTACL		3 5555111	W)	O CAL									
Feb 6-Feb Feb 7-Feb	-17	22	139.1 106.5	5.26 5.30	1049 1024	524 512	1.1	5.8 5.7	28.04 27.2																							
eb 8-Feb	-17	GE	161.7	5.14	994	496	1.3	4.1	27.84	0	<1.8	16.7	0.095	<3.1	6													BE 250				
eb 8-Feb Feb 9-Feb Feb 10-Feb	-17	8.92 8.19	390.8 496.9	8.06 7.82	932 882	466 441	0	1.1	27.8 27.74																			100				
Feb 11-Feb	-17																		27 87								IE 95	in ter				
Feb 13-Feb Feb 14-Feb	-17.	8.77	175.8 198.1	8.12 6.41	782 776	391 388	8.5 0.4	6.2	28.28 28.08																							
Feb 15-Feb Feb 16-Feb		8.79 9.07	370.3 301.3	6.31 6.95	783 785	392 392	0.9	6.5 5.4	28 27.97	0	<1.8	16.5	0.115	<3.1	2																	
Feb 16-Feb Feb 17-Feb Feb 18-Feb	-17	8.91	284	5.73	809	405	10.9	11.4	28.12	Name of					1000		100-111	200	THE REAL PROPERTY.	Towns in	Part of the last							Contract of	1000100		Total Contract	
Feb 19-Feb	-17	8.91	345.9	6.57	774	387	0	4.9	28.19							Continued to																
eb 21-Feb Feb 22-Feb	-17	8.85 8.75	256.2 209	6.12 5.76	794 806	397 403	0.2	5.8 6.3	28.16 28.34	0	<1.8	17	0.079	3.1	2																	
eb 23-Feb Feb 24-Feb	-17	8.82 8.89	290.6 188.7	5.81 6.19	827 842	413 421	0	2.7	28.09 29.04			- 11	1323										- 30							G-11		
Feb 25-Feb	-17:	0.00	100.7	0.10					20.01	in the same	1000					The second				1		September 1						1148	-		100 yr -	DI. SA
Feb 27-Feb	-17	8.79	334.1	7.01	855	427	0	6	27.89																					24		
Mar 1-Mor-	-17	8.72 6.77	178.5 241.5	6.32 6.16	867 861	433 430	1.1	5.7	28.18 28.99	0	<1.8	19.2	0.071	<3.1	6	0.008	s0.002	s0.01	≤0.002	≤0.001	≤0.01	≤0.002	0.95	1.4	0.024	≤0.002	≤0.001	0.004	0.011	0.2	0.011	0.004
Mar 2-Mar- Mar 3-Mar-	17 8	8.82	177.2	6.70	824	412	0	5	28.5				4						77	TAX IT	-						THE P	250	U 1835	.00 1 0	0.00	
Mar 4-Mar- Mar 5-Mar-	17	24					10-20														2000											
Mar 6-Mar Mar 7-Mar	17 8	8.97 8.83	160.1 169.3	7.15 5.92	807 846	404 423	0.1	5.6 6.8	28.47	1 2 1 2 2			20	1 22		700																
Mar 8-Mar- Mar 9-Mar-		8.73 8.54	435.8 347	5.72 6.02	846 858	423 429	0.2	9.2	28.82	0.7	<1.8	15.5	0.09	<3.1	10																	
Mar 10-Mar		8.7	419.8	4.43	887	444	0	4.6	29.2													100000					No.	No. of Lot				
Mar 12-Mar Mar 13-Mar	-17.	8.92	448.1	8.53	890	444	0	3.1	29.38	150											100	TAN HOLD					Name of Street		NI S			
Mar 14-Mar Mar 15-Mar	-17 8	8.92 8.28	191.1 568.3	6.30	847 748	423 374	1.2	11.7	29.73 29.35	0	<1.8	13.3	0.086	<3.1	4				-5-1-								100					
Mar 16-Mar	-17 8	8.77	468.4	5.04	740	370	0	6	29.29		31,0	10.0	0.000	4.1																		
Aar 17-Mar Aar 18-Mar Aar 19-Mar	-17		770.2	5,95	727	363	0.1	7.2	29.4	No. of Lot				- 150	100		NR EIG											1000			Tall.	
der 20-Mar	-17 8	8.96	483.5	6.53	681	341	0.3	7	29.32			- 1		L		DE SE	THE RES		183	100000			Salles				EXEC-1		200			
Mar 21-Mar Mar 22-Mar	-17 8	8.79	475 430.1	5.63 5.53	742 744	371 372	2.6 3.7	11.2 6,7	29.43 29.56	0	<1.8	8.9	0.153	0.1					MI THE									100				
Aar 23-Mar Var 24-Mar	-17 6 -17 6	8.74 8.75	447.9 300.9	5.65 5.22	743 748	372 375	10.9	4.1 8.9	29.37 29.4		- 127.2																					
Aar 24-Mar Aar 25-Mar 25-Mar 27-Mar Aar 28-Mar Aar 29-Mar Aar 31-Mar	-17		# LU							000				(250) II	N E		1000		81 5 1								Lan III	18 B				
Aar 27-Mar Aar 28-Mar	-17 8	8.75	330	6.51	761	342	0	4.5	28.47			ALC: UNK							- 22		la su	TXI D	() E II			0-1011	TX TEXT		1000	0000	1000	
And Visit Of	MA E	8.97	445 370.2	5.71 5.53	755 745	375 371	0.4 2.5	4.2 8.2	28.5 29.56	0	<1.8	13.9	0.11	41	6												- 8	Harry -			w jones	
AND ST-MAI	- EC -	8.51	350.2	5.65	744	375	1.7	3.9	29.4	11.00		No.			= 81	100000	201		- VI	100		SEVERE I			No. OF THE							

Thilawa Special Economic Zone (Zone A) **Development Project (Operation Phase)**

Appendix

Ground Subsidence Monitoring Status (Location- Admin Complex Compound)

Ground Subsidence Monitoring Status (Operation Phase)

Location

Admin Complex Compound

Coordinate Points

E=209545.508

N=1844669.443

Manah	Data	Predefined	Weekly Reading	Subsidence	Remark		
Month	Date	Level (m)-ASL	Level (m)-ASL	(m)	Nemark		
	15-Jul-16	+7.137	+7.137	0.000			
Jul	22-Jul-16	+7.137	+7.136	-0.001			
	29-Jul-16	+7.137	+7.136	-0.001			
	5-Aug-16	+7.137	+7.136	-0.001			
Aug	12-Aug-16	+7.137	+7.136	-0.001			
Aug	19-Aug-16	+7.137	+7.136	-0.001			
	26-Aug-16	+7.137	+7.136	-0.001			
	2-Sep-16	+7.137	+7.136	-0.001			
	9-Sep-16	+7.137	+7.136	-0.001			
Sept	16-Sep-16	+7.137	+7.136	-0.001			
	23-Sep-16	+7.137	+7.136	-0.001			
	30-Sep-16	+7.137	+7.136	-0.001			
	7-Oct-16	+7.137	+7.136	-0.001			
	14-Oct-16	+7.137	+7.136	-0.001			
Oct	21-Oct-16	+7.137	+7.136	-0.001			
	28-Oct-16	+7.137	+7.136	-0.001			
	4-Nov-16	+7.137	+7.136	-0.001			
Nov	11-Nov-16	+7.137	+7.136	-0.001			
NOV	18-Nov-16	+7.137	+7.136	-0.001			
	25-Nov-16	+7.137	+7.138	+0.001			
	2-Dec-16	+7.137	+7.136	-0.001			
	9-Dec-16	+7.137	+7.136	-0.001			
Dec	16-Dec-16	+7.137	+7.135	-0.002			
	23-Dec-16	+7.137	+7.133	-0.004			
	30-Dec-16	+7.137	+7.133	-0.004			
	6-Jan-17	+7.137	+7.134	-0.003			
Jan	13-Jan-17	+7.137	+7.134	-0.003			
Jaii	20-Jan-17	+7.137	+7.134	-0.003			
	27-Jan-17	+7.137	+7.134	-0.003			
	3-Feb-17	+7.137	+7.134	-0.003			
Feb	10-Feb-17	+7.137	+7.134	-0.003			
ren	17-Feb-17	+7.137	+7.134	-0.003			
	24-Feb-17	+7.137	+7.134	-0.003			
	3-Mar-17	+7.137	+7.134	-0.003			
	10-Mar-17	+7.137	+7.134	-0.003			
Mar	17-Mar-17	+7.137	+7.128	-0.009	After earthquake		
	24-Mar-17	+7.137	+7.128	-0.009	THILAWAZ		
	31-Mar-17	+7.137	+7.128	-0.009	A NA TITO		

Thilawa Special Economic Zone (Zone A) Development Project (Operation Phase)

Appendix

Accident or Incident Case Record
September 2016 - March 2017

: 3 November 2016

Description : Oil and Grease found in the Retention Pond

<u>Issue</u>

MJTD found the oil and grease in retention pond when water quality monitoring at 18 October 2016 and reported to OSSC at once.

Figure 1 Found the oil and grease in SW-1 (retention pond discharge)

Figure 2 Found oil and grease around the box culvert (But cannot see in photo because of the thin layer of oil is dispersed on water)

Figure 3 Construction Site near around the box culvert

Action

- 1. Takes the action by closing the discharge gate of retention pond immediately because oil contaminated water may gradually release or discharge the retention pond and may effect to the villager who is living near the creek. The next day (19th October 2016) as MJTD planned schedule of weekly monitoring for SW-1 (retention pond discharge) and collected the sample and sent to the laboratory. Weekly result from SW-1 for that result, MJTD plan to check whether it was comply with the standard. Please see the below table 2.1
- 2. In 19th October 2016, cooperation with Environmental Section from OSSC and checking around the retention pond again and remind to construction near that area for not to dispose or discharge into the drain directly.
- 3. TSMC instructs MJTD to implement the following action:
 - Oil removal and discharging water from retention pond as long as MJTD can control flood.
 - Additional water quality monitoring take the sample from SW-1(discharging point of retention pond) and analysis parameter of oil and grease and other bi-monthly monitoring parameters after removal of oil (before discharging water to the outside cannel).
 - To install simple oil fence, oil removal mat or oil catcher to take action such incident in future to prevent such kind of incident.

Table 2.1 Water Quality Monitoring Result (Before and After Discharging)

No	Parameters	Standards	Units	Storage in Retention Pond	Discharging		
				rona	Before	After	
Date				19-Oct-16	26-Oct-16	2-Nov-16	
1	COD(Cr)	60	ppm	2020	3.5	< 0.7	
2	BOD(5)	200	ppm	322.6	1.8	0.6	
3	Total Coliform	400	MPN/100ml	160000	160000	160000	
4	Total-Nitrogen	80	ppm	3	2.9	5.3	
5	Total-Phosphorus	2	ppm	0.663	0.507	0.522	
6	Oil and Grease	5	ppm	421.4	8.8	4.73	
7	Suspended Solids	30	ppm	350	346	402	

In the water quality monitoring at SW-1 (Retention Pond Discharge Point), parameters (COD, BOD, Total Coliform, Oil and Grease and Suspended Solids) are excess than the standards when the oil and grease found in the retention pond at 18 October 2016. According to the sample of result before discharging and after discharging, COD and BOD is rapidly lower than the standard and oil and grease is slightly decreased than the standard. In the MJTD water quality monitoring result, total coliform and suspended solids are higher than the standards since the start of weekly monitoring from September sonclusion, total coliform and suspended solids are higher than the standards is not sprice to the spillage of oil and grease issue.

FREE TRADE INTEGRATED LOGISTICS LIMITED

Lot No. B-18-2, Zone A, Thilawa Special Economics Zone, Thanlyin Township, Yangon, Myanmar. Phone No. 01-2306666, 01-2305770, Fax: 01-503832

Date: 30-3-2017

FIRE INCIDENT REPORT

To : Officer and General Manager

Operations Department

Myanmar Japan Thilawa Development Limited

From: Free Trade Integrated Logistics Limited. B 18-2, Zone A, TSEZ

Gas cutter cutting the packing frame causes SWP Panel fire

At (9-3-2017)11:30 am Thursday, gas cutter (U Ye Lin Naung) cutting the packing frame causes SWP Panel fire as fire spark touch to panel at B 18-2, Zone A, TSEZ. Immediately, we inform to MJTD office and call firefighters from MJTD and fire department. Soon after arrival, flames were coming through the pile of SWP panel. Firefighters acted quickly and were able to extinguish the fire in about 30 minutes.

When cutting packing frame with GAS Cutter (propane), some fire spark touch to SWP Panel and caused this fire. The occupants of this work immediately tried to extinguish the fire with an extinguisher (ABC), watering from fire water tank to this fire before coming Fire department and water boxer. When firefighter (MJTD, SUNTAX and Fire Department) coming they extinguish the fire and fire stopped at 12:10am.

We prepare safety plan before this job such as fire extinguisher. No other injuries for the cases.

We are sorry for the cases in MJTD complex to all other locators and MJTD.

We lists out lost materials as follow:

Sr. No	Item	No.	Quantity	Units	Remark
1	Flashings	244		No.	
2	Insulated Puff Panels Super wall 100mm		1965.535	Sqm	
3	Insulated Puff Panels Super wall 50mm		578.64	Sqm	
4	Insulated Puff Panels Glamet 50mm		1822.14	Sqm	
5	Column Assembly	9	5691.6	Kgs	MANA
6.	Mezz: Beam Assembly	2	1663.4	Kgs	13
7	Mezz: Column Assembly	3	2140.8	Kgs	S MJ
8	Roll up Door Cover	10		No	3
9	Rope Sealant Tape (5x22)	780		No	WAW A

FREE TRADE INTEGRATED LOGISTICS LIMITED

Lot No. B-18-2, Zone A, Thilawa Special Economics Zone, Thanlyin Township, Yangon, Myanmar. Phone No: 01-2306666, 01-2305770, Fax: 01-503832

10	Single Skin Curved Sheet	42		No	
11	Sturt Beam Assembly	16	1607.8	Kgs	
12	40FT Container	2		No	

We prepared counter measure for the fire case. We hereby submit the following document of counter measure plan for a fire safety in B 18-2, Zone A, TSEZ.

Attachments:

- a) Layout plan for Fire Extinguisher.
- b) Layout plan for firefighting water tank.
- c) Assembly Point Plan
- d) Hot Work Yard
- e) Incident operation procedure (fire safety plan)
- Contact Person and number

Applicant

Signature

Name

Address

U Myint Lwin (Director)

No.82/84, Banyadala Street, Mingalar Taung Nyunt Tsp,

Yangon, Myanmar.

Fire Safety Plan

The fire safety plan include

- 1) The designation and organization of site personnel to carry out fire safety duties, including fire watch service if applicable,
- 2) The emergency procedures to be used in the case of fire,
- 3) Sounding the fire alarm,
- 4) Notifying the fire department,
- 5) Notifying the MJTD office,
- 6) Instruction site personnel on procedures to be followed when the alarm sounds, and
- 7) Fire fighting procedure,
- 8) The control of the fire hazards in and around the site,
- 9) Maintenance of the fire fighting facilities,
- 10) Follow emergency evacuation

Contact Person and Number (YANGON CREATION GROUP CO., LTD.)

Sr. No	Name	Position	Ph No.	Email	Remarks
1	U Myint Lwin	Director	095146300	myintlwin35@gmail.com	
2	U Kyaw Nyein	Senior Project Manager	095144887	kyawnyain@gmail.com	
3	U Tin Aung Win	Project Manager	09254452415	tinaungwin36@gmail.com	
4	U Zaw Win	Project Engineer	09254897673		
5					
6					

Contact Person and Number (MJTD)

Sr. No	Name	Position	Ph No.	Email	Remarks
1	U Zay Yar Tway	Senior Mechanical Engineer	09421072136	zayar@mjtd.com.mm	
2	Daw Thant Nandar Yin	Civil engineer	09252386641	thantnandaryin@mjtd.com.mm	
3	Daw Thwe2 Myint Aung	Assisant Manager	09798484863	Thwethwe.mjtd@gmail.com	
4	U Thura Win		09799522165	thurawin@mjtd.com.mm	
5					

Contact Person and Number (Fire Department)

Sr. No	Name	Position	Ph No.	Email	Remarks
1	Fire Services Dept:		01-664080, 01-656644, 01-584060, 01-254000		
2					
3	ALAYA				

End of Document

